Review

Patient-Centered Digital Health Records and Their Effects on Health Outcomes: Systematic Review

Martijn R Brands¹, MD; Samantha C Gouw¹, MD, PhD; Molly Beestrum², MLiS; Robert M Cronin³, MS, MD; Karin Fijnvandraat^{1,4}, MD, PhD; Sherif M Badawy^{5,6}, MBBCh, MS, MD

¹Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam Reproduction & Development, Public Health, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands

- ⁴Department of Molecular Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- ⁵Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- ⁶Division of Hematology, Oncology, and Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States

Corresponding Author:

Sherif M Badawy, MBBCh, MS, MD Department of Pediatrics Feinberg School of Medicine, Northwestern University 420 E Superior St Chicago, IL, 60611 United States Phone: 1 312 227 4789 Email: <u>sherif.badawy@northwestern.edu</u>

Abstract

Background: eHealth tools such as patient portals and personal health records, also known as patient-centered digital health records, can engage and empower individuals with chronic health conditions. Patients who are highly engaged in their care have improved disease knowledge, self-management skills, and clinical outcomes.

Objective: We aimed to systematically review the effects of patient-centered digital health records on clinical and patient-reported outcomes, health care utilization, and satisfaction among patients with chronic conditions and to assess the feasibility and acceptability of their use.

Methods: We searched MEDLINE, Cochrane, CINAHL, Embase, and PsycINFO databases between January 2000 and December 2021. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Eligible studies were those evaluating digital health records intended for nonhospitalized adult or pediatric patients with a chronic condition. Patients with a high disease burden were a subgroup of interest. Primary outcomes included clinical and patient-reported health outcomes and health care utilization. Secondary outcomes included satisfaction, feasibility, and acceptability. Joanna Briggs Institute critical appraisal tools were used for quality assessment. Two reviewers screened titles, abstracts, and full texts. Associations between health record use and outcomes were categorized as *beneficial, neutral or clinically nonrelevant*, or *undesired*.

Results: Of the 7716 unique publications examined, 81 (1%) met the eligibility criteria, with a total of 1,639,556 participants across all studies. The most commonly studied diseases included diabetes mellitus (37/81, 46%), cardiopulmonary conditions (21/81, 26%), and hematology-oncology conditions (14/81, 17%). One-third (24/81, 30%) of the studies were randomized controlled trials. Of the 81 studies that met the eligibility criteria, 16 (20%) were of high methodological quality. Reported outcomes varied across studies. The benefits of patient-centered digital health records were most frequently reported in the category health care utilization on the "use of recommended care services" (10/13, 77%), on the patient-reported outcomes "disease knowledge" (7/10, 70%), "patient engagement" (13/28, 56%), "treatment adherence" (10/18, 56%), and "self-management and self-efficacy" (10/19, 53%), and on the clinical outcome "laboratory parameters," including HbA_{1c} and low-density lipoprotein (LDL; 16/33, 48%). Beneficial effects on "health-related quality of life" were seen in only 27% (4/15) of studies. Patient satisfaction (28/30, 93%), feasibility (15/19, 97%), and acceptability (23/26, 88%) were positively evaluated. More beneficial effects were reported for digital health records that predominantly focus on active features. Beneficial effects were less frequently observed among patients with a high disease burden and among high-quality studies. No unfavorable effects were observed.

²Galter Health Sciences Library at Northwestern University, Chicago, IL, United States

³Department of Medicine, The Ohio State University, Columbus, OH, United States

Conclusions: The use of patient-centered digital health records in nonhospitalized individuals with chronic health conditions is potentially associated with considerable beneficial effects on health care utilization, treatment adherence, and self-management or self-efficacy. However, for firm conclusions, more studies of high methodological quality are required.

Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42020213285; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=213285

(J Med Internet Res 2022;24(12):e43086) doi: 10.2196/43086

KEYWORDS

telemedicine; health records; personal; electronic health records; outcome assessment; health care

Introduction

Background

The prevalence and disease burden of chronic health conditions is on the rise. The World Health Organization predicts that by 2030, chronic noncommunicable health conditions will account for >50% of the total disease burden [1,2]. In particular, cardiovascular conditions, cancer, respiratory conditions, and diabetes have the highest morbidity and mortality [1]. Currently, 60% of the US population has at least 1 chronic condition and 42% of the population has multiple chronic conditions [3]. This results in a high individual disease burden owing to the large impact on social participation and required patient self-management skills. Self-management refers to a person's ability to manage the clinical, psychosocial, and societal aspects of their illness and its care [4]. In contrast, self-efficacy is a person's belief that he or she can successfully execute this behavior [4]. Apart from a high individual disease burden, the prevalence of chronic conditions imposes a high macroeconomic burden [5]. Furthermore, an increasing shortage of health care providers is expected, among others in the United States [6] and Europe [7,8]. In combination with the increased pressure put on health systems by unexpected events such as the COVID-19 pandemic, this shortage threatens the delivery of essential health services [9]. To preserve the access to care for all patients, new technologies are increasingly being developed and adopted, including patient-centered digital health records.

Such patient-centered digital health records can significantly help engage and empower patients with a chronic health condition [10-13]. Patient-centered digital health records enable patients to take on a more active role in their care by allowing them to view parts of their medical records, such as medication lists, laboratory and imaging results, allergies, and correspondence. Other common features include secure messaging, requesting prescription refills, video consultation, paying bills, and managing appointments. Examples of patient-centered digital health records include patient portals and personal health records (PHRs). Patient-centered digital health records differ in the volume and detail of the provided medical data, functionalities, and level of patient control, as shown in Textbox 1. Highly engaged patients are reported to have increased disease knowledge, better self-management, more self-efficacy, and improved clinical outcomes [14-16]. The effects of using patient-centered digital health records may be most substantial for patients with chronic conditions. Many self-management skills are required, and their potential gains are the highest. Not only patients but the entire health care system might benefit from an increased adoption of patient-centered digital health records.

Textbox 1. Proposed taxonomy of patient-centered digital health records [10,17-21].

- Electronic health record (EHR): a digital version of a health care provider's paper chart, used by health care professionals alone. Patients cannot access data in an EHR. An EHR might contain data from one health care institution or from multiple institutions. Its scope can range from regional, to national, or international.
- Patient portal: the patient-facing interface of an EHR that enables people to view sections of their medical record. This might include access to test results, medication lists, or therapeutic instructions. Health care providers or health care offices determine what health information is accessible for patients. Patient portals often have additional features such as patient-professional messaging, requesting prescription refills, scheduling appointments, or communicating patient-reported outcomes. By definition, patient portals are "tethered," in which "tethered" refers to a patient portal's connection to an EHR. Occasionally, a patient portal is referred to as a tethered personal health record (PHR).
- PHR: a PHR is similar to a patient portal and can have similar features. However, the main difference is that contents are managed and maintained by individuals, not health care providers. People can access, manage, and share their health information, and that of others for whom they are authorized, such as parents or caretakers. Health information from different health care institutions may reside in a single patient-managed PHR. In general, PHRs are not tethered unless otherwise specified. Few tethered PHRs currently exist but are increasingly being developed [22].
- Patient-centered digital health records: an umbrella term referring to patient portals, tethered PHRs, and part of the untethered PHRs. Patient-centered digital health records enable a 2-way exchange of health information between patients and the health care system and provide patients with the ability to view, download, or transmit their health information on the web. This health information is updated at regular intervals. In addition, it enables communication between patients and the health care system, either by adding or editing health information, exchanging patient-reported outcomes, or by using communication tools such as messaging. Additional functionalities are often present.
- "Electronic medical record" is an outdated term [21]. It can be considered a professional-centered EHR with limited functionalities.

Currently, huge investments of time and resources are made in patient-centered digital health records. However, limited insight exists in how the use of patient-centered digital health records by patients with a broad range of chronic conditions affects clinical and patient-reported outcomes and health care utilization. Moreover, we lack an overview of their effects on patient satisfaction, and the feasibility and acceptability of their use by people with chronic conditions. Previous systematic reviews focused on one health condition [23], focused on one type of digital health record [24-27], investigated a select set of health outcomes [24,26,28], or are now obsolete in this rapidly changing technological landscape [23,25,27].

Objectives

Therefore, in this systematic review, we summarized the available evidence on patient-centered digital health records. Our primary objective was to assess how patient-centered digital health records for nonhospitalized patients with chronic conditions affect clinical and patient-reported health outcomes and health care utilization. Our secondary objective was to evaluate patient satisfaction with and feasibility and acceptability of using patient-centered digital health records. Results of this systematic review may help guide future development and implementation.

Methods

The protocol for this study was registered in the International PROSPERO (International Prospective Register of Systematic Reviews) Register of Systematic Reviews (CRD42020213285) [29]. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed [30].

Literature Search

A medical librarian (MB) conducted the original literature search using the following databases: MEDLINE, Cochrane Library, CINAHL, Embase, and PsycINFO. All original studies published between January 1, 2000, and December 1, 2020, were assessed. A search update in MEDLINE was performed for all studies published between December 1, 2020, and December 31, 2021. Multimedia Appendix 1 presents the full search strategy. Articles published before 2000 were excluded because of the rapidly changing field of digital health technology [30].

Eligibility Criteria

Patient-centered digital health records were defined as mobile health (mHealth) or eHealth technologies that enable a 2-way exchange of health information between patients and the health care system, such as patient portals, PHRs, or mHealth apps with a health record functionality. A patient-centered digital health record provides patients with the ability to view, download, or transmit their health information on the web. This health information was updated at regular intervals. In addition, a patient-centered digital health record allows for communication between patients and the health care system, either by adding or editing health information, exchanging patient-reported outcomes, or by using communication tools such as messaging. Several other functionalities are common, but were not considered essential; for example, appointment scheduling, requesting prescription refill, viewing educational material, using decision support tools, and using connected wearables. Exclusion criteria were nondigital health records, digital health records intended for hospitalized patients, and digital health records that are not accessible to patients, such as the clinician-facing components of the electronic health record (EHR).

Studies

Studies investigating patient-centered digital health records intended for nonhospitalized patients with a chronic health condition were included. Only studies published in English were included. Eligible studies included randomized controlled trials (RCTs), quasi-experimental studies, nonexperimental observational studies (including cohort and cross-sectional studies), and pilot or feasibility studies. Of mixed methods studies, only nonqualitative parts were used for data extraction. Studies that only described health care providers' experiences were excluded.

Participants

Studies on patients with a chronic health condition of all age groups were considered. Chronic conditions included all diseases with a moderate to high disease burden and moderate to high impact on daily life. Consequently, these conditions demand considerable self-management skills from patients to manage the clinical, psychosocial, and societal aspects of chronic condition and its care. The selection of chronic conditions included in our search strategy was based on the Charlson Comorbidity Index, other literature, and clinical expertise [31,32]. Diseases included cancer, arthritis, HIV, AIDS, asthma, chronic obstructive pulmonary disease, chronic heart conditions, hematologic disease, chronic kidney disease, celiac disease, inflammatory bowel disease, cystic fibrosis, diabetes mellitus, and multiple sclerosis (MS).

Outcomes

Studies were required to report at least one primary or secondary outcome. Primary outcomes were clinical outcomes (including disease events and complications, vital parameters, and laboratory parameters), patient-reported outcomes (including self-management and self-efficacy, patient engagement, health-related quality of life (HRQoL), stress and anxiety, and treatment adherence), and health care utilization (including the number of emergency department [ED] visits and hospitalizations, the use of preventive or recommended care services by patients, and regular workload for health care professionals). Secondary outcomes included technology-related outcomes (including patient satisfaction, feasibility, and acceptability). Definitions and examples of these 13 outcomes are presented in Table 1.

Brands et al

 Table 1. Definitions and examples of all health outcomes included in this systematic review.

Inclu	ded study outcomes	Definitions and examples
Clini	cal outcomes	
E c	Disease events and complications	• For example, asthma exacerbation, chronic kidney disease progression, and death
١	Vital parameters	• For example, blood pressure, BMI, weight, and respiratory parameters
I	Laboratory parameters	• For example, HbA _{1c} ^a , LDL ^b , cholesterol, eGFR ^c , HIV viral load, and CD4+ T-cell count
Patie	nt-reported outcomes	
S s	Self-management and elf-efficacy	 Self-management is a person's ability to manage the clinical, psychosocial, and societal aspects of illness and its care. Self-efficacy is the belief that a person can successfully execute this behavior (eq. measured by the validated Diabetes)
		Empowerment Scale) [4]
F	Patient engagement	 Patient engagement comprises 3 suboutcomes: Patient activation: patients believe that their own role in managing their care is important, patients' confidence and knowledge to take action, how much they take action, and if patients are capable of staying on course under stress (eg, measured by the Patient Activation Measure PAM13) [33] Patient involvement: patients' involvement and participation in treatment decisions, and patients' involvement in sharing information, preparing and conducting a medical consultation, and accepting instructions from doctors and nurses [34] (eg, measured by the number of patients that is in possession of an Asthma Action Plan) Disease knowledge: patients' knowledge of a disease and its related care activities (eg, measured by the Brief
		Diabetes Knowledge Test) [35]
F o	Health-related quality of life	 All aspects of one's quality of life that are health-related, including physical functioning, social functioning, and mental health (eg, measured by the 36-Item Short Form Survey SF-36) [36] A reduction in anxiety or stress was considered a suboutcome (eg, measured by the parenting stress index) [37]
Т	Freatment adherence	• The extent to which a person's behavior (taking medication, following a diet, or the execution of lifestyle changes) corresponds with health care providers' recommendations [38] (eg, adherence to HIV medication)
Healt clinic	th care utilization: >all appointments, and te	types of encounters between patients and health care providers, including ED ^d visits, hospitalizations, outpatient lephone calls
E iz	ED visits and hospital- zations	• Reductions in undesirable events (eg, reductions in emergency department visits and hospitalizations)
F	Recommended care ervices	• Increased use of recommended care services by people with uncontrolled disease, and the improved use of preventive care services (eg, follow-up outpatient clinic visits among people with uncontrolled HIV, eye examinations in people with diabetes)
F	Regular workload	• A decrease in regular workload for health care professionals (eg, patients use email instead of interruptive telephone calls as a first method of contact)
Tech	nology-related outcom	es
F	Patient satisfaction	 Patient satisfaction with accessing and using patient-centered digital health records Patient satisfaction with the effects of using patient-centered digital health records (eg, sense of control, perceived quality of care)
F	Feasibility	• Adherence to patient-centered digital health records and user retention rates, for which no universal cut-off values are available
A	Acceptability	• The perceived usability of patient-centered digital health records and how these affect behavior, as well as identified facilitators and barriers

^aHbA_{1c}: glycated hemoglobin.

^bLDL: low-density lipoprotein.

^ceGFR: estimated glomerular filtration rate.

^dED: emergency department.

https://www.jmir.org/2022/12/e43086

XSL•FO RenderX

Data Extraction

Two independent reviewers (MB and SB) assessed titles, abstracts, and full texts for eligibility. Disagreements were resolved by discussion, if necessary, with a third reviewer (SG).

A modified, electronic version of the standardized Cochrane data extraction form [39] was used to extract the following data items: first author's name; publication year; study design; disease or diseases studied; study aim; country and setting; participants' age and sex; sample size; inclusion and exclusion criteria; follow-up duration; description, features, and purpose of the patient-centered digital health record and (if applicable) of the comparator; size and description of the control group (if applicable); device used; description of health outcomes and results; and main study findings.

Quality Appraisal

For quality appraisal, Joanna Briggs Institute (JBI) critical appraisal tools for RCTs, cross-sectional studies, cohort studies, and quasi-experimental studies were used [40]. JBI tools were modified to better suit the assessment of digital health record studies. Several items were added, including adequate patient-centered digital health record descriptions and selection bias measures, as presented in Multimedia Appendix 2. As the JBI tools differed in the number of items, all scores were converted to a 15-point scale. Articles with a score of ³12 were considered of "high quality," between 8.5 and 11.9 of "medium quality," and <8.5 of "low quality."

Data Synthesis

Associations between patient-centered digital health record use and health outcomes were categorized in 3 groups: "beneficial," "neutral or clinically nonrelevant," or "undesired." Categorizations were determined by our interpretation of study findings, based on meaningful clinical effects and statistical significance (P < .05), and could therefore differ from the authors' conclusions. Statistical significance was considered relevant only if the effect size were clinically significant. If available, minimal clinically important differences were used to assess effect sizes. The summarization of effects was based on the vote-counting method, as no meta-analysis could be performed. The findings were summarized for all conditions, grouped by disease category (diabetes mellitus, cardiopulmonary diseases, hematology-oncology diseases, and other diseases), and grouped according to outcome type (clinical outcomes, patient-reported outcomes, health care utilization, and technology-related outcomes).

Subgroup Analyses

Several subgroup analyses were performed. The first subgroup included conditions with a high disease burden. These included conditions with either impaired social participation or that require a high level of self-management skills. Impaired social participation was defined as being unable to participate in work or school or engage with friends and family as desired because of the condition or its treatment. High self-management skills are defined as recurrent actions demanded from patients to prevent or treat the disease or its consequences, including high disease-related knowledge needed to actively engage in decision-making. This subgroup was determined based on clinical expertise of the study team. Second, we assessed 2 subgroups: patient-centered digital health records that predominantly offered passive features and those that predominantly offered active features. Passive features are those through which the patient receives information but does not actively add information. Active features are those in which the patient performs an action and actively engages with the digital health record. The third subgroup of interest included studies with high methodological quality. A sensitivity analysis was performed to investigate whether our results were influenced by poor quality studies. Finally, the subgroups of interest were studies that included older participants (mean age >55 years), a high number of female participants (>45%), or a racially diverse population (<50% White participants).

Results

Overview

The search yielded 7716 unique publications. After screening the titles and abstracts, 320 full-text articles were retrieved. A total of 81 articles met the inclusion criteria. No non-English articles that met the inclusion criteria were identified. Figure 1 shows the study PRISMA flowchart. In total, 1,639,556 participants were included in the studies of this systematic review. Most (74/81, 91%) studies included only adult participants. Of the total 1,369,913 participants, 99% (n=1,629,660) were adults. Nine studies included children or their parents, with a total number of 9297 children and 599 parents. Sample sizes of studies varied from 10 to 267,208 participants. Furthermore, 46% (747,370/1,639,556) of the participants were female. Of the 81 included studies, health literacy was reported by 7 (9%) studies and insurance status by 15 (20%) studies. Race distribution was reported by 74% (60/81) of studies, of which 47 (78%) studies included a population of which more than half were White and 26 (43%) studies of which >75% were White.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. PC-DHR: patient-centered digital health record.

Study Characteristics

Study characteristics are presented in Tables 2-5 (36 studies are listed in Table 2; 11 studies are listed in Table 3, 14 studies are listed in Table 4, and 20 studies are listed in Table 5). Most investigated conditions were type 1 or 2 diabetes mellitus (37/81, 46%), cardiovascular conditions (14/81, 17%), and malignancies (11/81, 14%). Studies were mostly conducted in the following countries: United States (58/81, 72%), the Netherlands (7/81, 9%), Canada (5/81, 6%), and United Kingdom (3/81, 4%). In addition, 30% (24/81) of the studies were RCTs, 27% (22/81) were cross-sectional studies, 20% (16/81) were retrospective observational cohort studies, and 23% (18/81) were quasi-experimental studies, including pretest-posttest and feasibility studies. One study was a secondary data analysis of the intervention group in an RCT. Of the 55 studies that reported

follow-up durations, 6 (7%) studies had a follow-up of less than a month, 25 (31%) studies between 1 and 6 months, 14 (17%) studied between 7 and 12 months, and 10 (12%) studies of >12 months.

Explanations of the patient-centered digital health records investigated in each study are presented in Tables 6-9. Patient-centered digital health records range from a pilot patient portal enabling patients to view a limited set of their medical data to comprehensive PHRs, offering extensive data access and enabling appointment scheduling and prescription refill requests. A minority (12/81, 15%) of studies specifically evaluated ≥ 1 digital health record features such as secure messaging or a medication adherence module. In addition, 15% (12/81) of studies used a hybrid approach to assess a combination of a digital health record with a connected device, or with training, coaching, or face-to-face visits.

Brands et al

Author, year	Country, setting	Study population, dis- ease, controlled?	Burden ^b	Study design	Sample size	Age (years) ^c , mean (SD)	Gender ^c (fe- male), n (%)	Race ^c (White), n (%)
Bailey et al [41], 2019	United States, 2 aca- demic hospitals	Adults with DM ^d , on high-risk medication	_	Pilot or feasi- bility	100	56 (11)	57 (57)	48 (48)
Boogerd et al [42], 2017	Netherlands, 7 medi- cal centers	Parents of children <13 years with DM type 1	+	Pilot or feasi- bility	I ^e =54, C ^f =51	9.1 (2.7): Children	30 (56)	NR ^g
Byczkowski et al [43], 2014	United States, 1 aca- demic hospital	Parents of children with DM (or CF^h or JIA^i)	<u>+</u>	Cross-sec- tional	I=126, C=89	11 (NR)	69 (54.8)	115 (91.3)
Chung et al [44], 2017	United States, outpa- tient care organiza- tion	Adults with DM	_	Cohort	I=12,485, C=2831	56 (12)	5493 (44)	5119 (41)
Conway et al [45], 2019	United Kingdom, Scotland's health system	Patients with DM	-	Cross-sec- tional	1095	58 (12)	405 (36.99)	873 (78.73)
Devkota et al [46], 2016	United States, 6 PCPs ^j	Patients with DM type 2	_	Cohort	I=409, C=1101	58 (12) ^k	235 (57.5)	250 (61.1)
Dixon et al [47], 2016	United States, 3 community centers	Adults with DM type 2	-	Pilot or feasi- bility	96	53 (11)	56 (58)	47 (49)
Graetz et al [48], 2018	United States, inte- grated health system	Adults with DM	-	Cross-sec- tional	267,208	NR	127,458 (47.7)	116,770 (43.7)
Graetz et al [49], 2020	United States, inte- grated health system	Adults with DM with at least 1 oral drug	-	Cross-sec- tional	111,463	64 (13)	51,545 (46.24)	45,205 (40.56)
Grant et al [50], 2008	United States, 11 PCPs	Adults with DM using medication	-	RCT ¹	I=126, C=118	59 (10)	54 (42.9)	117 (92.9)
Lau et al [51], 2014	Canada, 1 academic hospital	Adults with DM	-	Cohort	I=50, C=107	55 (14)	22 (44)	NR
Lyles et al [52], 2016	United States, inte- grated health system	Adults with DM type 2 using statins	-	Cohort	I=8705, C=9055	61 (11) ^k	4013 (46.1)	3134 (36) ^k
Martinez et al [53], 2021	United States, 4 medical centers	Adults with DM type 2 using medication	-	Pilot or feasi- bility	60	58 (13)	33 (55)	41 (68)
McCarrier et al [54], 2009	United States, 1 dia- betes clinic	Adults <50 years with uncontrolled DM type 1	+	RCT	I=41, C=36	57 (8)	15 (37)	39 (95)
Osborn et al [55], 2013	United States, 1 aca- demic hospital	Adults with DM type 2 using medication	-	Cross-sec- tional	I=62, C=13	57 (8)	39 (63)	46 (74)
Price-Hay- wood and Luo [56], 2017	United States, inte- grated health system	Adults with DM or HT ^m	_	Cohort	I=10,497, C=90,522	NR	6205 (59.11)	8055 (76.74)
Price-Hay- wood et al [57], 2018	United States, inte- grated health system	Adults with DM or HT	-	Cohort	I=11,138, C=89,880	58 (13)	6,204 (55.7)	NR
Quinn et al [58], 2018	United States, 26 PCPs	Adults <65 years with DM type 2	-	RCT	I=82, C=25	54 (8)	39 (48)	51 (62)
Reed et al [59], 2015	United States, inte- grated health system	Adults with DM, HT, CAD ⁿ , asthma, or CHF ⁰	±	Cross-sec- tional	1041	NR	587 (56.4)	618 (59.4)
Reed et al [60], 2019	United States, inte- grated health system	Adults with DM+HT, CAD, asthma, or CHF	±	Cross-sec- tional	165,477	NR	79,594 (48.1)	NR (60.9)
Reed et al [61], 2019	United States, inte- grated health system	Adults with DM, asth- ma, HT, CAD, CHF or CV event risk	±	Cross-sec- tional	I=1392, C=407	NR	719 (51.7)	816 (58.6)

Table 2. Study characteristics of studies investigating diabetes mellitus (of 37 studies investigating diabetes mellitus, 36 are listed in Table 2).^a

https://www.jmir.org/2022/12/e43086

XSL•FO RenderX J Med Internet Res 2022 | vol. 24 | iss. 12 | e43086 | p. 7 (page number not for citation purposes)

Brands et al

Author, year	Country, setting	Study population, dis- ease, controlled?	Burden ^b	Study design	Sample size	Age (years) ^c , mean (SD)	Gender ^c (fe- male), n (%)	Race ^c (White), n (%)
Riippa et al [62], 2014	Finland, 10 PCPs	Adults with DM, HT or HC ^p	_	RCT	I=80, C=57	61 (9)	45 (56)	NR
Riippa et al [63], 2015	Finland, 10 PCPs	Adults with DM, HT or HC	-	RCT	I=80, C=57	61 (9)	45 (56)	NR
Robinson et al [64], 2020	United States, 1 vet- eran hospital	Veterans with uncon- trolled DM type 2	-	Cross-sec- tional	I=446, C=754	66 (8)	28 (6.3)	384 (86.1)
Ronda et al [65], 2014	Netherlands, 62 PCPs+1 hospital	Adults with DM	-	Cross-sec- tional	I=413, C=758	64 (12)	154 (37.3)	383 (93.6)
Ronda et al [66], 2015	Netherlands, 62 PCPs+1 hospital	Adults with DM	-	Cross-sec- tional	I=413, C=219	59 (13)	154 (37.3)	383 (93.6)
Sabo et al [67], 2021	United States, 21 practices	Adults with DM type 2	-	Cohort	I=189, C=148	61 (13)	75 (40.9)	113 (72.9)
Sarkar et al [68], 2014	United States, inte- grated health system	Adults with DM	-	Cohort	I=8705, C=9055	61 (11) ^k	4013 (46.1)	5072 (58.27)
Seo et al [69], 2020	South Korea, 1 aca- demic hospital	Patients with DM	-	Cohort	I=133, C=7320	54 (10)	23 (17.3)	NR
Sharit et al [70], 2018	United States, 1 vet- erans center	Overweight veterans with prediabetes	-	Pilot or feasi- bility	38	58 (8)	9 (24)	8 (21) ^k
Shimada et al [71], 2016	United States, Veter- an registry	Veterans with uncon- trolled DM, HT or LDL ^q	_	Cohort	I=50,482, C=61,204	61 (10)	2060 (4.08)	35,761 (70.84)
Tenforde et al [72], 2012	United States, 1 community hospital	Adults <75 years with DM	-	Cohort	I=4036, C=6710	59 (10)	1857 (46) ^k	3,390 (84) ^k
van Vugt et al [73], 2016	Netherlands, 52 PCPs	Patients with DM type 2	-	RCT	I=66, C=66	68 (10)	54 (41)	91 (69)
Vo et al [74], 2019	United States, inte- grated health system	Adults <80 years with DM type 2	-	RCT	I=673, C=603	61 (10)	296 (44)	394 (58.5)
Wald et al [75], 2009	United States, 230 PCPs	Patients with DM type 2	-	RCT	126	59 (NR)	53 (42.1)	117 (92.9)
Zocchi et al [76], 2021	United States, nation- wide	Patients with DM type 2, partly uncontrolled	-	Cohort	95,043	63 (10)	4,339 (4.57)	68,954 (72.55)

^aAll studies are listed in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. The study by Druss et al [77] is therefore listed in Table 5.

^bIf conditions are considered to have a high disease burden or demand high self-management skills, a positive sign is shown. Otherwise, a sign is indicated. A \pm sign indicates that multiple diseases have been studied, and only some of the diseases were considered to have a high disease burden. ^cIf available, age (years), gender, and race were reported by digital health record users ("the intervention group").

^dDM: diabetes mellitus.

^eI: intervention.

^fC: control.

^gNR: not reported.

^hCF: cystic fibrosis.

ⁱJIA: juvenile idiopathic arthritis.

^jPCP: primary care practice.

^kPresented numbers were estimated based on the data provided in the original articles.

^lRCT: randomized controlled trial.

^mHT: hypertension.

ⁿCAD: coronary artery disease.

^oCHF: congestive heart failure.

^pHC: hypercholesterolemia.

^qLDL: low-density lipoprotein.

Brands et al

Table 3. Study characteristics of studies investigating cardiopulmonary diseases (of 21 studies investigating cardiopulmonary diseases, 11 are listed in Table 3).^a

Author, year	Country, setting	Study population, dis- ease, controlled?	Burden ^b	Study design	Sample size	Age (years) ^c , mean (SD)	Gender ^c (fe- male), n (%)	Race ^c (White), n (%)
Aberger et al [78], 2014	United States, renal transplant clinic	Postrenal transplant pa- tients with HT ^d	+	Pilot or feasi- bility	66	54 (NR ^e)	34 (52) ^f	48 (72) ^f
Ahmed et al [79], 2016	Canada, 2 academic hospitals	Adults with asthma us- ing medication	+	RCT ^g	I ^h =49, C ⁱ =51	NR	32 (68)	NR
Apter et al [80], 2019	United States, multi- center hospitals	Adults with asthma us- ing prednisone	+	RCT	I=151, C=150	49 (13)	270 (89.7)	4 (1.3)
Fiks et al [81], 2015	United States, 3 PCPs ^j	Children aged 6-12 years with asthma, partly uncontrolled	+	RCT	I=30, C=30	8.3 (1.9)	26 (87) among par- ents	13 (43)
Fiks et al [82], 2016	United States, 20 PCPs	Children aged 6-12 years with asthma, partly uncontrolled	+	Pilot or feasi- bility	I=237, C=8896	NR	101 (42.8)	144 (61.5)
Kogut et al [83], 2014	United States, 1 community hospital	Adults aged >49 years with cardiopulmonary disorders	±	Pilot or feasi- bility	30	NR	14 (47)	NR
Kim et al [84], 2019	South Korea, 1 aca- demic hospital	Patients with obstruc- tive sleep apnea	_	RCT	I=30, C=13	43 (10) ^f	NR (15)	NR
Lau et al [85], 2015	Australia, nation- wide	Adults with asthma	+	RCT	I=154, C=176	40 (14)	124 (80.5)	NR
Manard et al [86], 2016	United States, PCP registry	Adults with uncon- trolled HT	-	Cohort	I=400, C=1171	61 (12)	262 (65.5)	72
Toscos et al [87], 2020	United States, 1 community hospital	Patients with nonvalvu- lar AF^k with OAC^l	+	RCT	I=76, C=77	71 (9)	60 (37.5)	153 (99.4)
Wagner et al [88], 2012	United States, 24 PCPs	Patients with hyperten- sion, partly uncon- trolled	_	RCT	I=193, C=250	55 (12)	145 (75.1)	96 (50.5)

^aAll studies are listed in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. The studies by Price-Haywood and Luo [56], Price-Haywood et al [57], Reed et al [59], Reed et al [60], Reed et al [61], Riippa et al [62], Riippa et al [63], Shimada et al [71] are listed in Table 2. The study by Martinez Nicolás et al [89] is listed in Table 4. The study by Druss et al [77] is therefore listed in Table 5. ^bIf conditions are considered to have a high disease burden or demand high self-management skills, a positive sign is shown. Otherwise, a sign is indicated. A \pm sign indicates that multiple diseases have been studied, and only some of the diseases were considered to have a high disease burden.

^cIf available, age (years), gender, and race were reported by digital health record users ("the intervention group").

^dHT: hypertension.

^eNR: not reported.

^fPresented numbers were estimated based on the data provided in the original articles.

^gRCT: randomized controlled trial.

^hI: intervention.

ⁱC: control.

^jPCP: primary care practice.

^kAF: atrial fibrillation.

¹OAC: oral anticoagulant drug.

Table 4. Study characteristics of studies investigating hematological and oncological diseases (n=14).

Author, year	Country, setting	Study population, dis- ease, controlled?	Burden ^a	Study design	Sample size	Age (years) ^b , mean (SD)	Gender ^b (fe- male), n (%)	Race ^c (White), n (%)
Cahill et al [90], 2014	United States, can- cer center	Adults with glioma	+	Cross-sec- tional	186	44 (13)	87 (46.8)	149 (86.1)
Chiche et al [91], 2012	France, 1 communi- ty hospital	Adults with ITP ^c	±	RCT ^d	I ^e =28, C ^f =15	48 (15) ^g	21 (75)	NR ^h
Collins et al [92], 2003	United Kingdom, hemophilia centers	Patients with hemophilia >11 years	+	Pilot or feasi- bility	10	NR	NR	NR
Coquet et al [93], 2020	United States, can- cer center	Patients with can- cer+chemotherapy	+	Cohort	I=3223, C=3223	59 (15)	1,554 (49.78)	1,804 (49.68)
Groen et al [94], 2017	Netherlands, cancer center	Patients with lung cancer	+	Pilot or feasi- bility	37	60 (8)	16 (47)	37 (100)
Hall et al [95],2014	United States, Can- cer Center	Patients with resection for CRC^{i} or EC^{j}	+	Pilot or feasi- bility	49	59 (12) ^g	37 (76)	48 (98)
Hong et al [96], 2016	United States, aca- demic pediatric hos- pital	Children aged 13-17 years with cancer or a blood disorder+par- ents	+	Cross-sec- tional	46	15 (1.2) ^g	10 (63) among chil- dren	NR
Kidwell et al [97], 2019	United States, multi- center hospitals	Patients aged 13-24 years with sickle cell disease	+	Pilot or feasi- bility	44	19 (NR)	24 (55)	0 (0)
Martinez Nicolás et al [89], 2019	Spain, 4 community hospitals	Patients with COPD ^k , CHF ^l , or hematologic malignancy	+	Pilot or feasi- bility	577,121	42 (23)	319,725 ^g (55)	NR
O'Hea et al [98], 2021	United States, can- cer centers	Adult women with nonmetastatic breast cancer ending treat- ment	+	RCT	I=100, C=100	61 (11)	100 (100)	85 (85)
Pai et al [99], 2013	Canada, cancer cen- ter	Adult men with prostate cancer	+	Cross-sec- tional	17	64 (7) ^g	0 (0)	16 (95)
Tarver et al [100], 2019	United States, aca- demic hospital	Patients with colorec- tal cancer	+	Cross-sec- tional	22	58 (10)	10 (45)	NR
Wiljer et al [<mark>101</mark>], 2010	Canada, breast can- cer registry	Patients with breast cancer	+	Pilot or feasi- bility	311	NR	303 (99.7)	NR
Williamson et al [102], 2017	United States, pedi- atric cancer center	Pediatric cancer sur- vivors	+	Cohort	56	NR	27 (48)	49 (88)

^aIf conditions are considered to have a high disease burden or demand high self-management skills, a positive sign is shown. Otherwise, a sign is indicated. A \pm sign indicates that multiple diseases have been studied, and only some of the diseases were considered to have a high disease burden.

^bIf available, age (years), gender, and race were reported by digital health record users ("the intervention group").

^cITP: idiopathic thrombocytopenic purpura.

^dRCT: randomized controlled trial.

^eI: intervention.

^fC: control.

^gPresented numbers were estimated based on the data provided in the original articles.

^hNR: not reported.

ⁱCRC: colorectal cancer.

^jEC: endometrial cancer.

^kCOPD: chronic obstructive pulmonary disease.

¹CHF: congestive heart failure.

Brands et al

Table 5. Study characteristics of studies investigating other diseases (of 21 studies investigating other diseases, 20 are listed in Table 5). Diseases include kidney disease (n=3, 15%), mental health disorders (n=3, 15%), multiple sclerosis (n=2, 10%), inflammatory bowel disease (n=2, 10%), rheumatologic conditions (n=2, 10%), and others (n=8, 40%).^a

Author, year	Country, setting	Study population, dis- ease, controlled?	Burden ^b	Study design	Sample size	Age (years) ^c , mean (SD)	Gender ^c (fe- male), n (%)	Race ^c (White), n (%)
Anand et al [103], 2017	Thailand, HIV clinic	MSM ^d and transgender women with HIV, part- ly uncontrolled	+	RCT ^e	186	30 (10) ^f	7 (4)	0 (0)
Bidmead and Marshall [104], 2016	United Kingdom, 1 community hospital	Patients with IBD ^g	+	Cross-sec- tional	60	NR ^h	NR	NR
Crouch et al [105], 2015	United States, 1 HIV clinic	Veterans with HIV, partly uncontrolled	+	Cross-sec- tional	I ⁱ =20, C ^j =20	43 (11)	1 (5)	19 (95)
Druss et al [106], 2014	United States, 1 mental health center	Patients with a mental disorder+chronic condi- tion	+	RCT	I=85, C=85	49 (7)	42 (49)	13 (15)
Druss et al [77], 2020	United States, 2 mental health cen- ters	Patients with a mental disorder+DM ^k , HT ^l , or HC ^m	+	RCT	I=156, C=155	51 (6.5)	95 (61)	29 (19)
Jhamb et al [107], 2015	United States, 4 nephrology clinics	Adults visiting nephrol- ogy clinics, partly un- controlled	+	Cross-sec- tional	1098	58 (16)	549 (50)	952 (86.7)
Kahn et al [108], 2010	United States, HIV clinic	Patients with HIV or AIDS	+	Pilot or feasi- bility	136	NR	15 (11) ^f	106 (78) ^f
Keith McInnes et al [109], 2013	United States, 8 Vet- eran hospitals	Veterans with HIV, partly uncontrolled	+	Cross-sec- tional	1871	NR	51 (2.73)	342 (18.28)
Keith McInnes et al [110], 2017	United States, Veter- ans care system	Veterans with HIV+de- tectable viral load, part- ly uncontrolled	+	Cohort	3374	NR	128 (3.79)	1130 (33.49)
Kiberd et al [111], 2018	Canada, dialysis clinic	Adult with home dialy- sis	+	Pilot or feasi- bility	41	57 (2)	13 (48)	NR
Lee et al [112], 2017	South Korea, 1 surgery department	Patients with cleft lip or cleft palate surgery	-	Pilot or feasi- bility	50	36 (NR)	33 (66)	NR
Miller et al [113], 2011	United States, MS ⁿ clinic	Patients with MS	+	RCT	I=104, C=102	48 (9)	73 (71.6)	80 (78.4)
Navaneethanet al [114], 2017	United States, multi- ple health centers	Adults with chronic kidney disease, partly uncontrolled	+	RCT	I=152, C=57	68 (NR) ^f	79 (52)	117 (77)
Plimpton [115], 2020	United States, HIV clinic	Women with HIV, partly uncontrolled	+	Pilot or feasi- bility	22	41 (11)	22 (100)	7 (32)
Reich et al [116], 2019	United States, 1 community hospital	Adults with IBD ^o	+	RCT	I=64, C=63	42 (16)	28 (46)	48 (77)
Scott Nielsen et al [117], 2012	United States, 1 aca- demic center	Adults with MS	+	Cross-sec- tional	I=120, C=120	45 (11)	90 (75)	115 (95.8)
Son and Nahm [118], 2019	United States, online senior community	Patients >49 years with 1 or more chronic condi- tions	±	Secondary data analysis	272	70 (9)	191 (70.2)	213 (78.3)
Tom et al [119], 2012	United States, inte- grated health system	Parents of children age <6 years with 1 or more chronic conditions	±	Cross-sec- tional	I=166, C=90	3 (1)	66 (39.8)	113 (68.1)
van den Heuv- el et al [120], 2018	Netherlands, 3 hospi- tals	Adults with bipolar dis- order	+	Cross-sec- tional	39	45 (11)	44 (67)	NR

XSL•FO RenderX J Med Internet Res 2022 | vol. 24 | iss. 12 | e43086 | p. 11 (page number not for citation purposes)

Author, year	Country, setting	Study population, dis- ease, controlled?	Burden ^b	Study design	Sample size	Age (years) ^c , mean (SD)	Gender ^c (fe- male), n (%)	Race ^c (White), n (%)
van der Vaart et al [121], 2014	Netherlands, 1 hospi- tal	Patients with rheuma- toid arthritis	+	Cross-sec- tional	214	62 (13)	140 (65.4)	NR

^aAll studies are listed in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. The study by Byczkowski et al [43] is therefore listed in Table 2.

^bIf conditions are considered to have a high disease burden or demand high self-management skills, a positive sign is shown. Otherwise, a sign is indicated. A \pm sign indicates that multiple diseases have been studied, and only some of the diseases were considered to have a high disease burden. ^cIf available, age (years), gender, and race were reported by digital health record users ("the intervention group").

^dMSM: men who have sex with men.

^eRCT: randomized controlled trial.

^fPresented numbers were estimated based on the data provided in the original articles.

^gIBD: inflammatory bowel disease.

^hNR: not reported.

ⁱI: intervention.

^jC: control.

^kDM: diabetes mellitus.

¹HT: hypertension.

^mHC: hypercholesterolemia.

ⁿMS: multiple sclerosis.

^oIBD: inflammatory bowel disease.

Brands et al

Table 6. Patient-centered digital health record descriptions for disease category diabetes mellitus (of 37 studies investigating diabetes mellitus, 36 are listed in Table 6).^a

Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Bailey et al [41], 2019	Electronic Med- ication Com- plete Communi- cation	PP ^d	Adherence module alone	View health information (medical summary), read after-visit summary, read educational material	Report medication con- cerns, monitor medica- tion use	Active
Boogerd et al [42], 2017	Sugarspace	РР	РР	View treatment goals, read educa- tional material	Parent-professional com- munication, peer support	Active
Byczkowski et al [43], 2014	In-house devel- oped	РР	РР	View health information (including laboratory results, medication), view appointments, read disease-specific information	Messaging, upload docu- ments, receive reminders	Passive
Chung et al [44], 2017	Not reported	PP	Messaging	View health information	Messaging	Active
Conway et al [45], 2019	My Diabetes My Way	Tethered PHR ^e	PHR	View health information from prima- ry and secondary care (including clinical parameters, medication, and correspondence), read educational material	Report self-measure- ments	Passive
Devkota et al [46], 2016	MyChart	РР	РР	View health information (including laboratory results, diagnoses, medi- cation, vital signs), read educational material	Messaging, request pre- scription refills, schedule appointments, pay bills	Passive
Dixon et al [47], 2016	CareWeb	РР	Medication module alone	View health information (including measurements, medication)	Report barriers to medica- tion adherence	Passive
Graetz et al [48], 2018 and Graetz et al [49], 2020	"Kaiser Perma- nente portal"	PP	РР	View health information (including laboratory results)	Messaging, schedule ap- pointments, request pre- scription refills, pay bills	Active
Grant et al [50], 2008	Not reported	РР	РР	View health information (including medication, laboratory results)	Edit medication lists, messaging, report adher- ence barriers or adverse effects	Active
Lau et al [121], 2014	BCDiabetes	PP	РР	View health information (including laboratory results), view care plan, read educational material	Messaging, use a journal	Passive
Lyles et al [52], 2016	"Kaiser Perma- nente portal"	PP	Medication module alone	View health information (including medical history, laboratory results, and visit summaries)	Messaging, schedule ap- pointments, request pre- scription refills	Active
Martinez et al [53], 2021	My Diabetes Care, part of My Health at Vanderbilt	РР	Diabetes module	View health information (including laboratory results and vaccinations), visualize information, read educa- tional material	Messaging, peer support, decision support tools	Active
McCarrier et al [54], 2009	Living with Dia- betes Interven- tion	РР	PP+case manager	View health information (including correspondence, action plans, and laboratory results), read diabetes- related information	Upload blood glucose readings, use a journal	Active
Osborn et al [55], 2013	My Health At Vanderbilt	РР	РР	View health information (including vital signs, laboratory results, and medication), read educational information	Messaging, manage ap- pointments, use health screening tools, pay bills	Passive
Price-Haywood and Luo [56], 2017 and Price-Haywood et al [57], 2018	MyOchsner	РР	РР	View health information (including an after-visit summary, allergies, and laboratory results)	Messaging, request pre- scription refills, schedule appointments	Passive
Quinn et al [58], 2018	Not reported	РР	РР	View self-reported health informa- tion (including medication and measurements), read educational material	Messaging, report self- measurements and medi- cation changes, receive automated feedback	Active

https://www.jmir.org/2022/12/e43086

XSL•FO RenderX J Med Internet Res 2022 | vol. 24 | iss. 12 | e43086 | p. 13 (page number not for citation purposes)

Brands et al

Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Reed et al [59], 2015	"Kaiser Perma- nente portal"	РР	Messaging alone	View health information (including laboratory results and correspondence)	Messaging, request pre- scription refills, schedule appointments	Active
Reed et al [60], 2019 (1) and Reed et al [61], 2019	"Kaiser Perma- nente portal"	РР	РР	View health information from prima- ry care and secondary care (includ- ing laboratory results and visit summaries)	Messaging, request pre- scription refills, schedule visits	Passive
Riippa et al [62], 2014 and Riippa et al [63], 2015	Not reported	РР	РР	View health information (including diagnoses, laboratory results, vacci- nations, and medication), view care plan, read educational material	Messaging	Passive
Robinson et al [64], 2020	My HealtheVet	РР	Messaging alone	View health information (including medication and correspondence), view appointments	Messaging, request pre- scription refills, receive reminders, upload notes and measurements, use a journal	Passive
Ronda et al [65], 2014 and Ronda et al [66], 2015	Digitaal log- boek	РР	РР	View diabetes-specific health infor- mation (including laboratory results, diagnoses, and medication), view treatment goals, view appointments	Messaging, upload self- measurements	Passive
Sabo et al [67], 2021	Diabetes En- gagement and Activation Plat- form	РР	РР	View health information (including medication and self-reported glu- cose measurements)	Report diet, physical ac- tivity, blood glucose measurements, complica- tions, mental health and goals, receive alerts	Active
Sarkar et al [68], 2014	"Kaiser Perma- nente portal"	РР	РР	View health information (including medical history, laboratory results, and visit summaries), view appoint- ments	Messaging, request pre- scription refills	Passive
Seo et al [69], 2020	My Chart in My Hand	Tethered PHR	PHR+sugar function	View health information (including laboratory results, medication, aller- gies, diagnoses)	Edit information, sched- ule appointment; sugar function: log treatment, food intake, and exercise	Active
Sharit et al [70], 2018	My HealtheVet	РР	Track Health mod- ule+wearable	View health information (including medication and correspondence), view appointments	Messaging, request pre- scription refills, receive reminders; track Health module: record diet and activity, upload data from connected accelerometer	Active
Shimada et al [71], 2016	My HealtheVet	РР	Messaging, prescrip- tion refills	View health information (including medication and correspondence), view appointments	Messaging, request pre- scription refills, receive reminders, upload notes and self-measurements, use a journal	Active
Tenforde et al [72], 2012	MyChart	РР	РР	View health information (including diagnoses and laboratory results), read diabetes educational material	Messaging, view glu- cometer readings, receive reminders	Passive
van Vugt et al [73], 2016	e-Vita	Tethered PHR	PHR+personal coach	View health information (measure- ments), read diabetes education	Messaging, self-manage- ment support program for personal goal setting and evaluation	Active
Vo et al [74], 2019	"Kaiser Perma- nente portal"	РР	PP+PreVisit Prioriti- zation messaging	View health information (including medical history, laboratory results, and visit summaries), view appoint- ments	PreVisit Prioritization messaging to report prior- ities before a clinic visit, request prescription re- fills	Active

XSL•FO RenderX

Brands et al

Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Wald et al [75], 2009	Patient Gate- way	Tethered PHR	PHR	View health information (including medication, allergies, and laboratory results)	Suggest corrections, re- port care concerns, ask for referrals, create care plans before visits	Active
Zocchi et al [76], 2021	My HealtheVet	PP	РР	View health information (including medication, laboratory results, imaging, and correspondence)	Messaging, requesting prescription refills, download health informa- tion	Active

^aAll studies are listed once in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. We have included only the functionalities that the authors have reported in their articles. We have applied the taxonomy as presented in Textbox 1 on the information provided by the authors. Therefore, our classification of patient-centered digital health records might not correspond with the term used by the authors. ^bIn this column, we indicated whether authors evaluated the complete patient-centered digital health record, or only part of it.

 c By definition, patient-centered digital health records have both passive and active features. In this column, we indicate whether patient-centered digital health records predominantly offer passive or active features. In passive features, patients receive information but do not actively add it. In terms of active features, patients perform an action and actively engage with the portal.

^dPP: patient portal.

^ePHR: personal health record.

Brands et al

Table 7. Patient-centered digital health record descriptions for disease category cardiopulmonary diseases (of 21 studies investigating cardiopulmonary diseases, 11 are listed in Table 7).^a

Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Aberger et al [78], 2014	Good Health Gateway	PP ^d	PP+BP ^e cuff	View BP measurements, view treatment goals	Communicate self-report- ed adherence, receive au- tomated and tailored feedback	Active
Ahmed et al [79], 2016	My Asthma Portal	РР	РР	View health information (including medication and diagnoses), read general and tailored asthma informa- tion	Monitor and receive feedback on self-manage- ment practices	Passive
Apter et al [80], 2019	MyChart	PP	PP	View health information (including laboratory results, vaccinations, and medication), view appointments	Messaging, request pre- scription refills, schedule appointments	Passive
Fiks et al [81], 2015 and Fiks et al [82], 2016	MyAsthma	PP	PP	View care plan, read educational material	Report symptoms, treat- ment adherence, con- cerns and side effects	Active
Kim et al [84], 2019	MyHealthKeep- er	Tethered PHR ^f	PHR+activity track- er	View previously uploaded self-re- ported data	Upload self-reported data (eg, diet, sleep, weight, BP, step count), connect with wearables, receive feedback from health care providers	Active
Kogut et al [83], 2014	ER-Card	Unteth- ered PHR	PHR+home visits by pharmacists	View patient-reported medication list	Pharmacists view and re- view patient-reported medication lists, and dis- cuss potential concerns in home visits	Active
Lau et al [85], 2015	Healthy.me	Unteth- ered PHR	PP+extra feature	View Asthma Action Plan, read ed- ucational content	Schedule appointments, peer support, self-report medication, use a journal	Passive
Manard et al [86], 2016	Not reported	РР	PP+BP cuff	View health information (including laboratory results, vital signs, and diagnoses)	Messaging, request pre- scription refills, upload measurements from con- nected BP cuff	Passive
Toscos et al [87], 2020	MyChart	РР	PP+smart pill bottle	View health information (including laboratory results, vaccinations, and medication), view appointments	Messaging, request pre- scription refills, schedule appointments Smart Pill Bottle: a device that sends notifications when a user opens or fails to open the lid, based on the dose schedule	Active
Wagner et al, 2012 [88]	MyHealthLink	Tethered PHR	PHR	View health information (including diagnoses, medication, and aller- gies), read educational material	Messaging, goal setting, upload self-measure- ments (including BP)	Active

^aAll studies are listed once in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. We have included only the functionalities that the authors have reported in their articles. We have applied the taxonomy as presented in Textbox 1 on the information provided by the authors. Therefore, our classification of patient-centered digital health records might not correspond with the term used by the authors.

^bIn this column, we indicated whether authors evaluated the complete patient-centered digital health record, or only part of it.

^cBy definition, patient-centered digital health records have both passive and active features. In this column, we indicate whether patient-centered digital health records predominantly offer passive or active features. In passive features, patients receive information but do not actively add it. In terms of active features, patients perform an action and actively engage with the portal.

^dPP: patient portal.

^eBP: blood pressure.

XSL•FO

^fPHR: personal health record.

Table 8. Patient-centered digital health record descriptions for disease category hematological and oncological diseases (n=14).^a

	6		1	<u> </u>		
Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Cahill et al [90], 2014	MyMDAnder- son	Tethered PHR ^d	PHR	View health information (including correspondence, operative reports, laboratory results, and imaging), read education material	Messaging, request pre- scription refills, schedule appointments	Passive
Chiche et al [91], 2012	Sanoia	PP ^e	PP+ITP ^f features	View health information (including allergies, vaccinations, medication, and test results), ITP-specific educa- tional material, read emergency protocols	Messaging	Passive
Collins et al [92], 2003	Advoy	РР	РР	View health information (treatment regimen), read educational material	Registration of symptoms and medication use, auto- mated alerts are sent to professionals	Active
Coquet et al [93], 2020	MyHealth por- tal	РР	Email use	View health information (including laboratory results)	Messaging, schedule ap- pointments, request pre- scription refills, pay bills	Active
Groen et al [94], 2017	MyAVL	РР	РР	View health information (including laboratory results, lung function, and correspondence), view appoint- ments, read personalized informa- tion	Upload patient-reported outcomes, receive tai- lored physical activity advice	Active
Hall et al [95], 2014	MyFoxChase	РР	Genetic screening	View health information (including laboratory results), view appoint- ments, read educational material	Messaging, receive alerts if genetic screening re- sults are available	Passive
Hong et al [96], 2016	MyChart	РР	РР	View health information (including laboratory results, medication, aller- gies)	Messaging, schedule ap- pointments, request pre- scription refills, use a journal	Passive
Kidwell et al [97], 2019	MyChart	РР	РР	View health information (including laboratory results, medication, diag- noses, and allergies), view appoint- ments, read information about sickle cell disease	Messaging	Passive
Martinez Nicolás et al [89], 2019	Not reported	РР	РР	View health information (including laboratory results, imaging, and medication)	Messaging, teleconsult- ing, schedule appoint- ments, upload glucose measurements	Active
O'Hea et al [98], 2021	Polaris Oncolo- gy Survivorship Transition	РР	РР	View health information (including diagnoses, operative reports, and medication), view appointments, read educational material	Request a referral	Passive
Pai et al [99], 2013	PROVIDER	Tethered PHR	PHR	View health information (including laboratory results, medication, pathology, imaging, and correspon- dence), read educational material	Messaging, use decision support tools, fill in questionnaires	Passive
Tarver et al [100], 2019	OpenMRS	Tethered PHR	PHR+extra feature	View health information (including treatment history, diagnoses, and care plan), view a treatment summa- ry, read educational material	Messaging, peer support	Passive
Wiljer et al [101], 2010	InfoWell	Tethered PHR	PHR	View health information (including medication, laboratory results, imaging, and pathology), view ap- pointments	Patients can organize and upload care information	Passive
Williamson et al [102], 2017	SurvivorLink	Unteth- ered PHR	PHR	Read educational material	Upload health documents and share these with pro- fessionals	Active

^aAll studies are listed once in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. We have included

https://www.jmir.org/2022/12/e43086

XSL•FO RenderX

only the functionalities that the authors have reported in their articles. We have applied the taxonomy as presented in Textbox 1 on the information provided by the authors. Therefore, our classification of patient-centered digital health records might not correspond with the term used by the authors.

^bIn this column, we indicated whether authors evaluated the complete patient-centered digital health record, or only part of it.

^cBy definition, patient-centered digital health records have both passive and active features. In this column, we indicate whether patient-centered digital health records predominantly offer passive or active features. In passive features, patients receive information but do not actively add it. In terms of active features, patients perform an action and actively engage with the portal.

^dPHR: personal health record.

^ePP: patient portal.

^fITP: idiopathic thrombocytopenic purpura.

Brands et al

Table 9. Patient-centered digital health record descriptions for disease category other diseases (of 21 studies investigating other diseases, 20 are listed in Table 9).^a

•						
Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Anand et al [103], 2017	Adam's Love	PP ^d	РР	View health information (HIV test results), receive appointment re- minders	Schedule HIV test ap- pointments, use e-coun- seling, receive appoint- ment reminders	Active
Bidmead et al [104], 2016	Patients Know Best	Tethered PHR ^e	PHR	View health information (including medication, laboratory results, and correspondence), read educational material	Communication with health care providers, upload and share health information	Active
Crouch et al [105], 2015	My HealtheVet	PP	РР	View health information (including laboratory results and correspondence)	Messaging, request pre- scription refills	Passive
Druss et al [106], 2014	My- HealthRecord	РР	PP+training	View health information (including diagnoses, measurements, laborato- ry results, medication, and aller- gies), view treatment goals	Prompts remind patients of routine preventive ser- vice	Passive
Druss et al [77], 2020	Not reported	PP	PP+training	View health information (including medication, allergies, measure- ments, and laboratory results)	Formulate long-term goals, that are translated into action plans with progress tracking	Active
Jhamb et al [107], 2015	Not reported	PP	PP	View health information (including diagnoses, allergies, immunizations, and laboratory results)	Messaging, schedule ap- pointments, request pre- scription refills	Passive
Kahn et al [108], 2010	MyHERO	РР	РР	View health information (including diagnoses, medication, laboratory results, and allergies), view appoint- ments, read information on interpret- ing test results	Upload notes and self- measurements	Passive
Keith McInnes et al [109], 2013 and Kei- th McInnes et al [110], 2017	My HealtheVet	РР	РР	View health information (including medication and correspondence), view appointments	Messaging, request pre- scription refills, receive reminders, upload notes and self-measurements, use a journal	Passive
Kiberd et al [111], 2018	RelayHealth	РР	PP	View health information (including test results and medication)	Messaging	Active
Lee et al [112], 2017	CoPHR	РР	РР	View health information (including diagnoses, laboratory results, medi- cation, allergies, vital signs, and correspondence), view appoint- ments, view treatment plan, read educational information	Manage and edit appoint- ments and health informa- tion	Passive
Miller et al [113], 2011	Mellen Center Care Online	Unteth- ered PHR	PHR	Review previously entered symptoms and HRQoL ^f	Messaging, report symp- toms and HRQoL and evaluate changes, prepa- ration for appointments	Active
Navaneethan et al [114], 2017	MyChart	PP	PP+part of users re- ceived training	View health information (including medication and laboratory results), read educational material	Messaging, schedule ap- pointments, request pre- scription refills	Passive
Plimpton [115] 2020	Not reported	PP	PP	View health information	Messaging	Passive
Reich et al [116], 2019	MyChart	PP	РР	View health information (including laboratory results, diagnoses, medi- cation, and vital signs)	Messaging	Passive
Scott Nielsen et al [117], 2012	PatientSite10	РР	РР	View health information (including laboratory results, and imaging), read educational material	Messaging, schedule ap- pointments, request pre- scription refills, upload self-measurements, pay bills	Active

XSL•FO RenderX J Med Internet Res 2022 | vol. 24 | iss. 12 | e43086 | p. 19 (page number not for citation purposes)

Author, year	Name	Туре	What is evaluated? ^b	Passive features	Active features	Focus ^c
Son and Nahm [118], 2019	MyChart	PP	PP+training	View health information (including medication and laboratory results), read educational material	Messaging, schedule ap- pointments, request pre- scription refills	Passive
Tom et al [119], 2012	My- GroupHealth	РР	РР	View health information (including diagnoses, medication, and test re- sults), read after-visit summaries, proxy access	Messaging, schedule appointments	Passive
van den Heuvel et al [120], 2018	"PHR-BD"	Tethered PHR	Tethered PHR+mood chart	View health information (including diagnoses, laboratory results, medi- cation, and correspondence), read educational material	Messaging, report symp- toms in a mood chart, view personal crisis plan	Active
van der Vaart et al [121], 2014	Not reported	PP	РР	View health information (including diagnoses, medication, and laboratory results), read educational material	Report and monitor HRQoL outcomes	Active

^aAll studies are listed once in Tables 2-5 and are reported in the disease category of the condition that is most prominently investigated. We have included only the functionalities that the authors have reported in their articles. We have applied the taxonomy as presented in Textbox 1 on the information provided by the authors. Therefore, our classification of patient-centered digital health records might not correspond with the term used by the authors.

^bIn this column, we indicated whether authors evaluated the complete patient-centered digital health record, or only part of it.

^cBy definition, patient-centered digital health records have both passive and active features. In this column, we indicate whether patient-centered digital health records predominantly offer passive or active features. In passive features, patients receive information but do not actively add it. In terms of active features, patients perform an action and actively engage with the portal.

^dPP: patient portal.

^ePHR: personal health record.

^fHRQoL: health-related quality of life.

Outcomes

An overview of reported associations for each health outcome is shown in Figure 2. The proportions of beneficial effects reported per health outcome are presented in Multimedia Appendices 3 and 4. For high-quality studies, proportions are presented in Multimedia Appendix 3. An overview of study conclusions and associated outcomes is presented in Tables 10-13. Studies were grouped according to disease group.

Figure 2. Health outcomes associated with patient-centered digital health record use. Associations refer to meaningful clinical effects or statistical significance. If studies report multiple health outcome within 1 category, each health outcome is included separately. *The proportion of health outcomes for which beneficial effects were reported. ED: emergency department.

	Number of reported outcomes							Propor
	0	5	10	15	20	25	30	tion*
Clinical outcome	5							
Disease event and complications (e.g. asthma exacerbation)								33%
Vital parameter (e.g. blood pressure, BMI)					-			38%
Laboratory parameter (e.g. HbA1c, cholesterol)							-	48%
Self-reported outcome	s							
Self-management and self-efficacy	2	_			-			53%
Engagement (activation, involvement, knowledge)						_		46%
Health-related quality of life								27%
Treatment adherence (e.g. HIV medication)					•			56%
Health care utilization	1							
Increase in recommended care services (e.g. preventive care)		-						42%
Reductions in ED visits and hospitalizations			-					77%
Decrease in regular workload								50%
Technology-related outcome	s							
Patient satisfaction with use								100%
Patient satisfaction with effects								75%
Feasibility (e.g. user compliance, user retention rate)					-			79%
Acceptability (e.g. ease of use, usability)						-		88%
Beneficial association	n-rel	evant a	associa	tion	- Un	desired	lasso	ciation

Brands et al

Table 10. Conclusions and health outcomes: all studies investigating diabetes (n=37), of which 8 (22%) are of high methodological quality.^a

Author, year	Participants	Comparison	Main conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Boogerd et al [42], 2017	Parents of children with DM ^c type 1	PP ^d users ver- sus PP nonusers	Patient portal use is not associated with less parental stress. The more stress, the more parents use the portal.	QE ^e	0	0	f	0	0
Lau et al [51], 2014	Patients with DM	Pretest PP nonuse versus posttest PP use	Patient portal use is associated with improved glycemic control.	Cohort	0	_	_	_	0
Lyles et al [52], 2016	Adults with DM type 2 using statins, registered for PP	Prescription re- fill use versus no refill use	Requesting prescription refills is asso- ciated with improved statin adherence.	Cohort	_	•	_	_	•
McCarrier et al [54], 2009	Adults aged <50 years with uncon- trolled DM type 1	Nurse-aided PP users versus PP nonusers	Patient portal use results in improved self-efficacy, but not in improved glycemic control.	RCT ^g	0	•	_	0	0
Price-Hay- wood and Luo [56], 2017	Adults with DM (or HT ^h)	PP users versus PP nonusers	Patient portal use is associated with more primary care visits and telephone encounters, but not with less hospital- izations or ED ⁱ visits.	Cohort	0	_	0	_	•
Sarkar et al [68], 2014	Adults with DM, registered for PP	Recurrent pre- scription refill use versus occa- sional refill use versus no refill use	Recurrent use of prescription refills is associated with improvements in adher- ence and lipid control.	Cohort	•	_	_		•
Shimada et al [71], 2016	Veterans with un- controlled DM, registered for PP	Messaging and prescription re- fills users ver- sus PP users who use neither	Messaging or requesting prescription refills is associated with improved glycemic control.	Cohort	•	_	_	_	•
van Vugt et al [73], 2016	Patients with DM type 2, registered for PHR ^j	PHR+personal coach versus PHR use alone	PHR use does not result in improved glycemic control, self-care, distress, nor well-being, regardless of personal coaching.	RCT	0	0	_	0	•
Dixon et al [47], 2016	Adults with DM type 2	Pretest PP nonusers versus posttest PP users	Patient portal use is associated with improved adherence, but not with changes in clinical outcomes nor care utilization.	QE	0	0	0	_	0
Druss et al [77], 2020	Patients with a mental disor- der+DM, HT or HC ^k	PP users versus PP nonusers	Patient portal use does not result in clinically relevant improvements in perceived quality of care, patient activation nor HRQoL ¹ .	RCT	0	0	•	_	0
Graetz et al [49], 2020	Adults with DM with at least 1 oral drug	PP users versus PP nonusers	Patient portal use is associated with small, likely irrelevant improvements in glycemic control and medication adherence.	Cross	0	0	_	_	0
Grant et al [50], 2008	Adults with DM using medication	Tethered PP use versus unteth- ered PP use	Using a tethered patient portal results in increased patient participation, but not improved glycemic control.	RCT	0	•	_	_	0
Reed et al [60], 2019	Adults with DM+HT, asthma, CAD ^m , or CHF ⁿ	PP users versus PP nonusers	Patient portal use is associated with more outpatient office visits, and with reduced ED visits and preventable hospitalizations.	Cross	•	_	0	_	0
Riippa et al [62], 2014	Adults with DM, HT, or HC	PP users versus PP nonusers	Patient portal use does not result in clinically relevant improvements in patient activation, except among adults with low baseline activation.	RCT	_	0	_	_	0

XSL•FO RenderX

Brands et al

Author, year	Participants	Comparison	Main conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Riippa et al [63], 2015	Adults with DM, HT, or HC	PP users versus PP nonusers	Patient portal use does not result in clinically relevant improvement in patient activation nor HRQoL.	RCT	_	0	0	0	0
Robinsonet al [64], 2020	Veterans with un- controlled DM type 2, registered for PP	Responders on team-initiated messages ver- sus nonrespon- ders	Responding on messages is associated with improved self-management and self-efficacy.	Cross	_	•	_	_	0
Ronda et al [65], 2014	Adults with DM	Recurrent PP users versus PP nonusers	Recurrent patient portal use is associat- ed with better self-efficacy and knowl- edge.	Cross	_	•	_	0	0
Ronda et al [66], 2015	Adults with DM, registered for PP	Persistent users versus early quitters	Recurrent users believe the patient portal increases disease knowledge, and they find it useful.	Cross	_	•	_	•	0
Sabo et al [67], 2021	Adults with DM type 2, registered for PP	PP users versus PP nonusers	Patient portal use has minor, clinically irrelevant effects on BMI, and no ef- fects on glycemic control nor blood pressure.	RCT	0	_	_	_	0
Seo et al [69], 2020	Patients with DM, registered for PHR	Continuous users versus noncontinuous users	Continuous use of a tethered PHR is associated with slightly improved glycemic control. Clinical implications are doubtful.	Cohort	0	_	_	_	0
Sharit et al [70], 2018	Overweight veter- ans with predia- betes	Pretest PP nonuse versus posttest PP use	Using an accelerometer-connected pa- tient portal is associated with improve- ments in physical activity and blood pressure.	QE	•	0	_	•	0
Tenforde et al [72], 2012	Adults aged <75 years with DM	PP users versus PP nonusers	Patient portal use is associated with slightly improved diabetes control, lipid profile, and blood pressure. Clinical implications are doubtful.	Cohort	0	_	•	_	0
Vo et al [74], 2019	Adults aged <80 years with DM type 2, registered for PP	Previsit mes- sage use versus no previsit mes- sage use	Sending previsit prioritization messages does not result in improved glycemic control, but does result in improved perceived shared-decision-making.	RCT	0	•		_	0
Zocchi et al [76], 2021	Patients with DM type 2, registered for PP	PP users	Among existing patient portal users with uncontrolled DM or high LDL ^o , increased use is associated with im- proved control.	Cohort	0	_	_	_	0
Bailey et al [41], 2019	Adults with DM, on high-risk medi- cation	PP users	Patients are satisfied with the patient portal.	QE	_	_	_	0	•
Byczkows- ki et al [43], 2014	Parents of children with DM (or CF ^p or JIA ^q)	PP users	Patients consider the patient portal to be useful in managing and understand their child's disease.	Cross	_	•	_	•	•
Chung et al [44], 2017	Adults with DM, registered for PP	Message users versus message nonusers	Using secure messaging is associated with better glycemic control.	Cohort	•	•	•	_	•
Conway et al [45], 2019	Patients with DM, registered for PP	PP users	Patients believe the tethered diabetes PHR might improve their diabetes self- care.	Cross	_	•	_	•	•
Devkota et al [46], 2016	Patients with DM type 2	PP users who read and write emails versus PP nonusers	Reading and writing emails is associat- ed with improved glycemic control.	Cohort	•	•	_	_	•

Brands et al

Author, year	Participants	Comparison	Main conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Graetz et al [48], 2018	Adults with DM	PP users versus PP nonusers	Patient portal use is associated with improved adherence to medication and preventive care utilization.	Cross	_	•	•	_	•
Martinez et al [53], 2021	Adults with DM type 2 using medi- cation, registered for PP	Pretest PP nonuse versus posttest PP use	Patient portal use results in clinically not relevant improvements in patient activation and self-efficacy. This is re- lated to the very short follow-up period of the study.	QE	_	0	_	0	•
Osborn et al [55], 2013	Adults with DM type 2 using medi- cation	PP users versus PP nonusers	Patient portal use is not associated with improved glycemic control, as com- pared with nonusers. However, among users, more frequent use is associated with improved glycemic control.	Cross	0	_		_	•
Price-Hay- wood et al [57], 2018	Adults with DM (or HT)	PP users versus PP nonusers	Messaging is associated with improved glycemic control.	Cohort	•	_	_	_	•
Quinn et al [58], 2018	Adults aged <65 years with DM type 2	PP+extra mod- ule users versus PP users	Messaging is associated with better glycemic control. Note: glycemic pa- rameters were predicted and not repre- sent measurements.	RCT	•				•
Reed et al [59], 2015	Adults with DM, HT, asthma, CAD, or CHF, registered for PP	PP users	One-third of patients report that messag- ing in a patient portal results in less health care visits and improved overall health.	Cross	_	•	•	_	•
Reed et al [61], 2019	Adults with DM, asthma, HT, CAD, CHF, or CV ^r event risk	PP users versus PP nonusers	One-third of patients report that using the patient portal improves overall health.	Cross	_	•	_	•	•
Wald et al [75], 2009	Patients with DM type 2	PHR users who created a previs- it plan	Users who create a previsit care plan feel better prepared for visits.	RCT	_	0	_	•	•

^aStudies are listed multiple times in Tables 10-13. Per disease category, the relevant subconclusion and health outcomes are described. Associations with health outcomes are color-coded as green for beneficial, yellow for neutral or clinically nonrelevant, or red for undesired. The half green and half yellow symbol implies that one study investigated multiple outcomes in one category and reported beneficial associations for some outcomes and neutral associations for others.

^bQuality appraisal—green: high quality; yellow: medium quality; red: low quality.

^cDM: diabetes mellitus.

^dPP: patient portal.

^eQE: quasi-experimental, including pretest-posttest studies and feasibility studies.

^fThe study did not assess any health outcome in a certain category.

^gRCT: randomized controlled trial.

^hHT: hypertension.

ⁱED: emergency department.

^jPHR: personal health record.

^kHC: hypercholesteremia.

^lHRQoL: health-related quality of life.

^mCAD: coronary artery disease.

ⁿCHF: congestive heart failure.

^oLDL: low-density lipoprotein.

^pCF: cystic fibrosis.

^qJIA: juvenile idiopathic arthritis.

^rCV: cardiovascular.

Brands et al

Table 11. Conclusions and health outcomes: studies investigating cardiopulmonary diseases (n=21), of which 6 (29%) are of high methodological quality.^a

Author, year	Participants	Comparison	Conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Ahmed et al [79], 2016	Adults with asthma using medication	PP ^c users versus PP nonusers	Patient portal use does not result in durable improvements in HRQoL ^d nor asthma control.	RCT ^e	0	0	0	0	•
Fiks et al [<mark>81</mark>], 2015	Children aged 6-12 years with asthma	PP users versus PP nonusers	Patient portal use results in im- proved asthma control.	RCT	ightarrow	\bigcirc	0	ightarrow	ightarrow
Lau et al [85], 2015	Adults with asthma	PHR ^f users versus PHR nonusers	PHR use does not increase the use of asthma action plans, and does not affect asthma control, health care utilization nor work or school partic- ipation.	RCT	0	0	0	g	•
Manard et al [86], 2016	Adults with uncon- trolled HT ^h	PP users versus PP nonusers	Using a patient portal linked with a blood pressure cuff is not associated with improved blood pressure control.	Cohort	0	_	_	_	•
Price-Hay- wood and Luo [56], 2017	Adults with HT (or DM ⁱ)	PP users versus PP nonusers	Patient portal use is associated with more primary care visits and tele- phone encounters, but not hospital- izations or ED^{j} visits. Effects on blood pressure control are not clini- cally relevant.	Cohort	0	_	0	_	•
Shimada et al [71], 2016	Veterans with un- controlled HC ^k or HT, registered for PP	Users of both mes- saging and prescrip- tion refills versus nonusers	Messaging or requesting prescrip- tion refills are both associated with improved lipid control. Requesting prescription refills is associated with improved blood pressure control.	Cohort	0	_	_	_	•
Apter et al [80], 2019	Adults with asthma using prednisone	PP use+training versus PP use+as- sistance via home visits	Patient portal use results in minor improvements in asthma control and HRQoL. Conducting home visits results in more improvements in these outcomes.	RCT	•	•	•	_	0
Druss et al [77], 2020	Patients with a mental disor- der+DM ⁱ , HT ^j , or HC ^k	PP users versus PP nonusers	Patient portal use does not result in clinically relevant improvements in perceived quality of care, patient activation, nor HRQoL.	RCT	0	0	•	_	0
Fiks et al [82], 2016	Children aged 6-12 years with asthma	PP users versus PP nonusers	Patient portal use is associated with improved treatment adherence. Among patients with uncontrolled asthma, its use is associated with more care visits. Adoption is low.	QE ^l	_	•	•	•	0
Martinez Nicolás et al [89], 2019	Patients with COPD ^m or CHF ⁿ	Pretest PP nonuse versus posttest PP use	Patient portal use is associated with less hospitalizations, readmissions, and ED visits among patients with CHF and COPD.	QE	•	_	•	_	0
Reed et al [60], 2019	Adults with DM+HT, asthma, CAD ^m , or CHF ⁿ	PP users versus PP nonusers	Patient portal use is associated with more outpatient office visits, and with reduced ED visits and pre- ventable hospitalizations.	Cross	•	_	0		0
Riippa et al [62], 2014	Adults with DM, HT, or HC	PP users versus PP nonusers	Patient portal use does not result in clinically relevant improvements in patient activation, except for pa- tients with low baseline activation.	RCT	_	0	_	_	0
Riippa et al [63], 2015	Adults with DM, HT, or HC	Patient portal ver- sus usual care	Patient portal use does not result in clinically relevant improvement in patient activation nor HROOL.	RCT	—	0	_	0	0

https://www.jmir.org/2022/12/e43086

Brands et al

Author, year	Participants	Comparison	Conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Toscos et al [87], 2020	Patients with non- valvular AF ^o with an oral anticoagu- lant drug	PP users versus PP nonusers	Using a patient portal connected to a Smart Pill Bottle does not result in improved drug adherence.	RCT	_	0	_	_	0
Wagner et al [88], 2012	Patients with HT	PHR users versus PHR nonusers	Using a tethered PHR does not re- sult in clinically relevant improve- ments in blood pressure control, pa- tient activation nor health care uti- lization. Adoption is low.	RCT	0	0	0	0	0
Aberger et al [78], 2014	Postrenal trans- plant patients with HT	PP users	Using a patient portal–linked blood pressure monitoring system is asso- ciated with improved blood pressure control.	QE	•	_	_	_	•
Kim et al [84], 2019	Patients with ob- structive sleep ap- nea	PHR+activity tracker versus PHR alone versus nonusers	Using a tethered PHR results in more weight loss, regardless of its connection to an activity tracker. No sleep-related outcome improve- ments are seen.	RCT	0	_	_	•	•
Kogut et al [83], 2014	Adults aged >49 years with car- diopulmonary dis- orders	PHR users versus PHR nonusers	Pharmacists reviewing patient-re- ported medication lists in a PHR might identify more medication-re- lated problems.	QE	0	_	_	_	•
Price-Hay- wood et al [57], 2018	Adults with HT or DM	PP users versus PP nonusers	Messaging is not associated with improved blood pressure control.	Cohort	0	_	_	_	•
Reed et al [59], 2015	Adults with DM, HT, asthma, CAD ^p , or CHF, registered for PP	PP users	One-third of patients report that messaging in a patient portal results in less health care visits and im- proved overall health.	Cross- sec- tional	_	0	•	_	•
Reed et al [61], 2019	Adults with DM, asthma, HT, CAD, CHF, or CV ^q event risk	PP users versus PP nonusers	A third of patients reports that using the patient portal improves overall health.	Cross- sec- tional	_	0	_	•	•

^aStudies are listed multiple times in Tables 10-13. Per disease category, the relevant subconclusion and health outcomes are described.

^bFor color coding of quality appraisal and health outcomes, see Table 10.

^cPP: patient portal.

^dHRQoL: health-related quality of life.

^eRCT: randomized controlled trial.

^fPHR: personal health record.

^gThe study did not assess any health outcome in a certain category.

- ^hHT: hypertension.
- ⁱDM: diabetes mellitus.

^jED: emergency department.

^kHC: hypercholesteremia.

¹QE: quasi-experimental, including pilot or feasibility studies.

^mCOPD: chronic obstructive pulmonary disease.

ⁿCHF: Congestive heart failure.

^oAF: atrial fibrillation.

^pCAD: coronary artery disease.

^qCV: cardiovascular.

Brands et al

Table 12. Conclusions and health outcomes: studies investigating hematological and oncological diseases (n=14), of which 2 are of high methodological quality (14%).^a

Author, year	Participants	Comparison	Conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Cahill et al [90], 2014	Adults with a brain tumor	PHR ^c users versus PHR nonusers	Using a tethered PHR is associated with improvements in patient uncertainty.	Cross- sec- tional		0	d		0
Coquet et al [93], 2020	Patients with can- cer+chemotherapy, registered for PP ^e	Email users versus email nonusers	Sending emails is associated with improved 2-year survival, less missed appointments, and less hos- pitalizations.	Cohort	•	_		_	•
Chiche et al [91], 2012	Adults with ITP ^f	PP users versus PP nonusers	Patient portal use does not result in improved HRQoL ^g . The portal is acceptable and feasible.	RCT ^h		0	_	•	0
Groen et al [94], 2017	Patients with lung cancer	PP users	Patient portal use does not affect HRQoL nor patient engagement. It is feasible and acceptable.	QE ⁱ	_	0	_	0	0
Hall et al [95], 2014	Patients with can- cer resection	PP users	Disclosing results of genetic cancer screening in a patient portal might be feasible and acceptable, and is not associated with more anxiety. Yet, few abnormal results were ob- served.	QE	_	•	_	•	0
Kidwell et al [97], 2019	Patients aged 13- 24 years with sick- le cell disease	PP users	Patient portal use is not associated with improved medical decision- making by patients. It is acceptable and easy to use.	QE	_	0	_	•	0
Martinez Nicolás et al [89], 2019	Patients with hematologic malig- nancy	Pretest PP nonuse versus posttest PP use	Patient portal use is not associated with less hospitalizations, readmis- sions, nor ED ^j department visits.	QE	•	_	•	_	0
Williamson et al [102], 2017	Pediatric cancer survivors	PHR users versus PHR registrants	Patient portal use is not associated with less missed appointments.	Cohort	_	_	0	0	0
Collins et al [92], 2003	Patients with hemophilia >11 years	Users	An electronic treatment log is con- sidered feasible and easy to use.	QE	_	_	_	0	•
Hong et al [96], 2016	Children aged 13- 17 years with can- cer or a blood disor- der+parents	PP users	A small cohort considers a patient portal to be feasible and useful.	Cross- sec- tional	_	0	_	0	•
O'Hea et al [98], 2021	Women with breast cancer	PP users versus PP nonusers	Patient portal use does not result in improved HRQoL nor disease knowledge.	RCT		0	_		•
Pai et al [99], 2013	Men with prostate cancer	PHR users	Patients are satisfied with a tethered PHR and find it increases disease knowledge.	Cross- sec- tional	_	•	_	0	•
Tarver et al [100], 2019	Patients with col- orectal cancer	Tethered PHR users	Patients are satisfied with an integrat- ed care plan and find it useful.	Cohort	—	_	—	ightarrow	•
Wiljer et al [101], 2010	Patients with breast cancer	Pretest PHR nonusers versus posttest PHR users	PHR use is not associated with im- proved self-efficacy, nor with a clinically relevant decrease in anxi- ety. Satisfaction is high.	QE	_	0	_	•	•

^aStudies are listed multiple times in Tables 10-13. Per disease category, the relevant subconclusion and health outcomes are described.

^bFor color coding of quality appraisal# and health outcomes, see Table 10.

^cPHR: personal health record.

^dThe study did not assess any health outcome in a certain category.

^ePP: patient portal.

XSL•FO RenderX

https://www.jmir.org/2022/12/e43086

^fITP: idiopathic thrombocytopenic purpura.

^gHRQoL: health-related quality of life.

^hRCT: randomized controlled trial.

ⁱQE: quasi-experimental, including pilot or feasibility studies.

^jED: emergency department.

Brands et al

Table 13. Conclusions and health outcomes: studies investigating other diseases (n=21), of which 2 (10%) are of high methodological quality.^a

Author, year	Participants	Comparison	Conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
Miller et al [113], 2011	Patients with multiple sclerosis	PHR ^c use versus PHR that only en- ables messaging	Using an untethered PHR results in slightly improved HRQoL ^d , but not in improved self-efficacy, disease control nor health care utilization.	RCT ^e			0	f	0
Nava- neethan et al [114], 2017	Adults with chron- ic kidney disease	PP ^g users+coach versus PP users versus PP nonusers	Patient portal use, regardless of added training, does not result in improved kidney function, nor al- tered health care utilization.	RCT	0	_	0	_	•
Anand et al [103], 2017	MSM ^h and trans- gender women with HIV	PP users	The patient portal is feasible and acceptable.	RCT	_	_	_	•	0
Druss et al [106], 2014	Patients with a mental disor- der+chronic condi- tion	PP users versus PP nonusers	Patient portal use results in in- creased use of preventive health services and medical visits, but not in improved HRQoL.	RCT	•	0	•	_	0
Druss et al [77], 2020	Patients with a mental disor- der+DM ⁱ , HT ^j , or HC ^k	PP users versus PP nonusers	Patient portal use does not result in clinically relevant improvements in perceived quality of care, patient activation, nor HRQoL.	RCT	0	0	•	_	0
Jhamb et al [107], 2015	Adults visiting nephrology clinics	PP users versus PP nonusers	Patient portal use might be associat- ed with improved blood pressure control, although its clinical rele- vance is unclear.	Cross- sec- tional	0	_	_	•	0
Keith McInnes et al [109], 2013	Veterans with HIV	PP users versus PP nonusers	Patient portal use is associated with improved adherence to HIV medica- tion.	Cross- sec- tional	_	•	_	•	0
Keith McInnes et al [110], 2017	Veterans with HIV+detectable vi- ral load, registered for PP	Messaging or pre- scription refill users versus nonusers	Requesting prescription refills is associated with improved HIV con- trol, but messaging is not.	Cohort	0	_	_	_	0
Kiberd et al [111], 2018	Adult with home dialysis	Pretest PP nonuse versus posttest PP use	Patient portal use is not associated with improvements in HRQoL nor perceived quality of care. Both were already high at baseline.	QE ¹	_	0	_	•	0
Lee et al [112], 2017	Patients with cleft lip or cleft palate surgery	PP users versus PP tailored for lip or cleft palate surgery	Using a tailored, disease-specific patient portal is associated with increased disease knowledge.	QE	—	•	—	•	0
Reich et al [116], 2019	Patients with in- flammatory bowel disease	PP users versus PP nonusers	Patient portal use does not result in improved HRQoL, but results in a higher vaccination rate. Patient sat- isfaction is high.	RCT	_	0	•	•	0
Scott Nielsen et al [117], 2012	Patients with multi- ple sclerosis	PP users versus PP nonusers	Messaging in a patient portal is asso- ciated with more clinic visits, but not with less ED ^m visits nor hospi- talizations.	Cross- sec- tional	_	_	0	•	0
Tom et al [119], 2012	Parents of children age <6 years with 1 ore more chronic condition(s)	PP users versus PP nonusers	Patient portal use is not associated with improved access to care, nor perceived quality of care. It is con- sidered feasible.	Cross- sec- tional	_	0	_	0	0
van den Heuvel et al [120], 2018	Adults with bipolar disorder	Pretest PHR nonusers versus posttest PHR users	PHR use is not associated with im- proved HRQoL, patient empower- ment, symptom reduction, nor dis- ease burden.	Cross- sec- tional	_	0	_	•	0

XSL•FO RenderX

Brands et al

Author, year	Participants	Comparison	Conclusion	Study design	Clini- cal	Patient reported	Care uti- lization	Tech- nology	Quali- ty ^b
van der Vaart et al [121], 2014	Patients with rheumatoid arthri- tis	Pretest PP nonusers versus posttest PP users	Patient portal use is not associated with improved patient empower- ment. It is considered useful and understandable.	Cross- sec- tional	_			•	0
Bidmead et al [104], 2016	Patients with in- flammatory bowel disease	PHR users	PHR use is not associated with improved self-management.	Cross- sec- tional	0	0	0	•	•
Byczkows- ki et al [43], 2014	Parents of children with CF ^o or JIA ^p (or DM)	PP users	Patients consider the patient portal to be useful in managing and under- stand their child's disease.	Cross	—	•	_	•	•
Crouch et al [105], 2015	Veterans with HIV	PP users versus PP nonusers	Patient portal use is associated with improved patient activation, disease knowledge, HIV load, but not with improved CD4-count nor treatment adherence	Cross- sec- tional	_	0	_	•	•
Kahn et al [108], 2010	Patients with HIV or aids	PP users	Patients are satisfied with the patient portal and consider it to be helpful in managing their problems.	QE	_	•	_	0	•
Plimpton [115], 2020	Women with HIV	Pretest PP nonuse versus posttest PP use	Patient portal use is associated with an increase in planned visits, but not with a decrease in missed visits. A trend toward improved viral load is seen.	QE	0	_	•	_	•
Son et al [118], 2019	Patients aged >49 years with 1 or more chronic condi- tion(s)	PP users	Patients consider a patient portal to be helpful in increasing self-manage- ment.	Cohort	_	•	_	•	•

^aStudies are listed multiple times in Tables 10-13. Per disease category, the relevant subconclusion and health outcomes are described.

^bFor color coding of quality appraisal and health outcomes, see Table 10.

^cPHR: personal health record.

^dHRQoL: health-related quality of life.

^eRCT: randomized controlled trial.

^fThe study did not assess any health outcome in a certain category.

^gPP: patient portal.

^hMSM: men who have sex with men.

ⁱDM: diabetes mellitus.

^jHT: hypertension.

^kHC: hypercholesteremia.

¹QE: quasi-experimental, including pilot or feasibility studies.

^mED: emergency department.

^oCF: cystic fibrosis.

^pJIA: juvenile idiopathic arthritis.

Clinical Outcomes

In 44 studies investigating a total of 69 clinical outcomes, a beneficial association with digital health record use was reported for 42% (29/69) of the outcomes. Hospitalizations and exacerbations were the most frequently studied disease events and complications, with beneficial effects reported in half of the studies (2/4 and 2/4, respectively). Blood pressure was the most frequently studied vital parameter, with beneficial effects reported in 36% (5/14) of the studies. HbA_{1c} and cholesterol levels were the most frequently studied laboratory parameters, with beneficial effects reported in 53% (10/19) and 57% (4/7) of the studies, respectively. No clinical outcomes were

XSL•FO RenderX unfavorably affected by patient-centered digital health record use. In comparison with the total population, higher proportions of beneficial effects were reported for diabetes mellitus and cardiopulmonary diseases. When focusing on 14 high-quality studies, beneficial effects were observed less frequently, in only 30% (7/23) of the clinical outcomes.

Studies that assessed vital parameters generally reported few other health outcomes. However, among the studies that assessed disease events and complications, and laboratory parameters, beneficial effects were often associated with improved treatment adherence [52,68,71,81]. We hypothesize that this might be related to the removal of logistical barriers for patients in

obtaining web-based prescription refills, as opposed to having to call health care providers or send them an email. Of the 6 high-quality studies that investigated treatment adherence, 2 studies assessed patient-centered digital health records that enabled patients to request prescription refills and found beneficial effects on adherence [52,68].

Patient-Reported Outcomes

Overall, in 53 studies investigating a total of 86 patient-reported outcomes, a beneficial association with digital health record use was reported for 45% (39/86) of the outcomes. Of the 18 studies investigating 19 self-management or self-efficacy outcomes, beneficial effects were reported in 53% (9/19). Of these 9 studies, 56% (5/9) used validated questionnaires. For patient engagement outcomes, large differences in the proportions of beneficial effects were observed: from 11% (1/9) for patient activation, to 56% (5/9) for patient involvement, and 70% (7/10) for disease knowledge. However, only in measuring patient activation, validated questionnaires were principally used (8/9, 88% of studies). For HRQoL, beneficial effects were reported in 27% (4/15) of the studies, of which half used validated HRQoL questionnaires. No patient-reported outcomes were unfavorably affected by patient-centered digital health record use. In comparison to the total population, higher proportions of beneficial effects were reported for diabetes mellitus, especially for patient engagement and treatment adherence. Lowest proportions were reported for cardiopulmonary diseases, especially for patient engagement. When focusing on 10 high-quality studies, a lower proportion (7/19, 37%) of beneficial effects was observed.

We observed that improvements in patient engagement were especially facilitated by strengthening patient-professional communication; for example, through secure messaging [71,81,93]. In addition, both self-efficacy and HRQoL primarily seemed to be reinforced through the use of 2 functionalities: patient-professional communication [54,90,113] and information on disease progression [90,113].

Health Care Utilization

For 24 studies investigating a total of 27 health care utilization outcomes, a beneficial association with digital health record use was observed for 59% (16/27) of the outcomes. The highest proportion (10/13, 77%) of beneficial effects was reported for an increased use of recommended care services. Of these 13 studies, 5 (38%) focused on recommended care services for people with uncontrolled disease, 4 (31%) on the use of preventive care services, and 4 (31%) on medical follow-up rates. In 25% (3/12) of the studies that assessed reductions in ED visits and hospitalizations, these were accompanied by an increased use of other care services, including outpatient clinic appointments and secure messaging. Compared with the total population, highest proportions of beneficial effects were reported for diabetes mellitus and hematological and oncological diseases. When focusing on 7 high-quality studies, lower proportions (3/9, 33%) of beneficial effects were observed.

Technology-Related Outcomes

For 39 studies investigating a total of 75 technology-related outcomes, a beneficial association with digital health record

```
https://www.jmir.org/2022/12/e43086
```

use was observed for 88% (66/75) of the outcomes. All (22/22, 100%) studies reported high patient satisfaction with accessing and using digital health records. Furthermore, 75% (6/8) of the studies reported high patient satisfaction with the effects of using digital health records. High feasibility was reported by 79% (15/19) of the studies, and high acceptability by 88% (23/26) of the studies. Highest feasibility was reported for digital health records intended for people with hematological and oncological diseases. Lowest feasibility and acceptability were reported for digital health records intended for people with cardiopulmonary diseases. When focusing on 6 high-quality studies, proportions of studies that found beneficial effects were similar.

High Disease Burden or Self-management

A subgroup of 47 studies that investigated patients with a high disease burden or high self-management was assessed. The following conditions were included: malignancies (11 studies), asthma (9 studies), HIV infection and AIDS (6 studies), hematologic conditions (5 studies), chronic kidney disease (3 studies), chronic heart failure (4 studies), mental disorders (3 studies), multiple sclerosis (2 studies), inflammatory bowel disease (2 studies), rheumatologic conditions (2 studies), insulin-dependent diabetes mellitus (2 studies), atrial fibrillation (1 study), cystic fibrosis (1 study), and posttransplant patients (1 study). In general, the digital health records assessed in this subgroup were more often tailored to specific patient populations through the addition of specialized functionalities or connected wearables.

In comparison with studies investigating patients with no high disease burden, studies investigating patients with a high disease burden reported considerably higher proportions of beneficial effects for vital parameters, patient engagement, reductions in ED visits and hospitalizations, and for all technology-related outcomes. Considerably lower proportions of beneficial effects were reported for laboratory parameters, health-related quality of life, treatment adherence, and increased use of recommended care services. For the 9 high methodological quality studies on high disease burden or self-management, the proportions of studies that found beneficial effects were roughly similar.

Focus on Passive Versus Active Features

Of the 81 studies, 41 (51%) of the studied patient-centered digital health records focused on passive features and 40 (49%) focused on active features. In comparison with digital health records with an active focus, more beneficial effects were observed among digital health records with a passive focus for laboratory parameters (9/16, 56% vs 7/17, 41%), self-management and self-efficacy (7/11, 64% vs 3/8, 38%), patient engagement (9/15, 60% vs 4/13, 31%), and for an increased use of recommended care services (5/6, 83% vs 5/7, 71%). Compared with digital health records with a passive focus, more beneficial effects were observed among digital health records with an active focus on disease events or complications (4/10, 40% vs 1/5, 20%) and reductions in ED visits and hospitalizations (4/6, 67% vs 1/6, 17%). However, when focusing on high-quality studies, higher proportions of beneficial effects were seen for digital health records with an active focus on all clinical outcomes, patient-reported outcomes,

reductions in ED visits and hospitalizations, patient satisfaction, and acceptability.

Quality Appraisal

Of the 81 included studies, 27 (33%) studies were graded as low quality, 38 (47%) as medium quality, and 16 (20%) as high quality (Tables 10-13). Studies investigating cardiopulmonary conditions were of the highest quality, with 29% (6/21) of the studies graded as high quality. Of the 24 included RCTs, 7 (29%) were of high quality. Only 38% (9/24) of the RCTs concealed allocation to treatment groups, and 67% (16/24) used intention-to-treat analyses. Of the 57 studies with other designs, 9 (16%) were graded as high quality. Overall, 15% (12/81) of studies reported power calculations.

Among the 65 studies that were graded as medium or low quality, only 35% (23/65) used reliable or validated tools for the measurement of all their outcomes and 48% (31/65) for part of their outcomes. Of these 65 studies, 10 (15%) studies took adequate measures to limit selection bias and 17 (26%) studies used a control group or randomized participants.

When focusing on the 16 high-quality studies, 3 functionalities appeared to be the most effective: secure messaging to lower barriers in patient-professional interaction, prescription refill functions to improve medication adherence, and information provision on disease progression. In addition, in 16 high-quality studies, the proportions of beneficial effects were similar for a subgroup of studies that included older participants (mean age >55 years), which included a high number of female participants (>45%), or included a racially diverse population (<50% White participants), as compared with the total population.

Discussion

Principal Findings

In this systematic review, we evaluated evidence on the effects of the use of patient-centered digital health records in nonhospitalized patients with chronic health conditions on clinical and patient-reported outcomes, health care utilization, and technology-related outcomes. Beneficial effects were most frequently reported for the use of recommended care services (10/13, 77%) and for 4 patient-reported outcomes: disease knowledge (7/10, 70%), patient involvement (5/9, 56%), treatment adherence (10/18, 56%), and self-management and self-efficacy (10/19, 53%). Regarding clinical outcomes, beneficial effects were reported in 42% (29/69) of the studies. Beneficial effects were least frequently reported for disease events and complications (5/15, 33%) and health-related quality of life (4/15, 27%). For digital health records that predominantly focused on active features, higher proportions of beneficial effects on nearly all health outcomes were observed among the high-quality studies.

In this study, we observed that patient-centered digital health record use may be associated with an increased use of recommended care services. Beneficial effects on ED visits and hospitalizations were mainly observed when accompanied by an increased rate of follow-up appointments or secure messaging [60,89,93]. This might imply that reducing ED visits and

https://www.jmir.org/2022/12/e43086

hospitalizations is primarily achieved by facilitating patient-professional communication.

Beneficial effects were most often reported for patients with diabetes or cardiopulmonary disorders. We suggest 2 explanations. First, the focus of digital health records has been directed toward patients with diabetes and asthma for some time because of the sheer number of people with these conditions. This could have resulted in higher-quality patient-centered digital health records and patients who were more accustomed to their use. Second, the relative improvements in health outcomes might be smaller among patients with a condition with a high disease burden because of a higher baseline level of self-management skills and disease knowledge.

The proportions of beneficial effects varied considerably between health outcomes, which may be explained by 2 reasons. First, outcomes with a higher proportion of beneficial effects were more often the primary study outcomes than the secondary outcomes. Digital health records were more frequently tailored for these outcomes, yielding higher beneficial effects. Second, outcome assessment was generally less robust for outcomes with a higher proportion of beneficial effects, such as self-management and patient engagement, which might have resulted in more false-positive effects.

Comparison With Earlier Evidence

Our results are more positive than those of the previous systematic reviews. This might be because of the increasing acceptance of digital health records, their improving quality, the increasing body of literature, or variations in digital health record definitions used. Two previous reviews found mixed effects on the use of portals on health outcomes and health care utilization [27] and reported positive effects on qualitatively assessed self-management in only one-third of the studies [25]. A recent systematic review that focused on portals intended for hospitalized patients found mixed results for patient engagement [26]. A systematic review that included only qualitative studies found that portal use was associated with positive effects on self-efficacy, treatment adherence, and disease knowledge [28]. In a review on eHealth interventions that aim to promote medication use, a weak association between digital health record use and health-related quality of life was observed [10]. This implies that digital health record engagement is not yet sufficient to affect patients' overall health-related quality of life.

Strengths and Limitations

This systematic review has several strengths. Our search strategy was comprehensive, to account for the lack of consensus in digital health record terminology. In addition, a wide variety of health outcomes were considered relevant to determine the impact of digital health record use. However, several limitations of this study must be considered. First, comparisons between studies were difficult because of the variety in evaluated functionalities. A similar diversity was observed among the reported follow-up durations, participants' ages, study sample sizes, and outcomes. Second, because it was not possible to perform a meta-analysis owing to the heterogeneity in reported (disease-specific) outcome measurements and effects, we used the vote-counting method. Therefore, we could not report the

effect estimates and indicated directions of effects [122]. Third, owing to a lack of agreement on feasibility and acceptability thresholds, much is left to the authors' discretion. Fourth, JBI critical appraisal tools rank every item equally despite being not equally important. Finally, publication bias could have resulted in overestimation of the positive effects of patient-centered digital health records. More studies with positive results have been published. In addition, many of the included studies assessed more "mature" patient-centered digital health records, which could have overestimated the effects.

We observed that high patient satisfaction rates did not fully reflect in other health outcomes. This can be partly attributed to acquiescence bias and satisficing [123]. Moreover, satisfaction was often reduced to a narrow ease-of-use questionnaire, instead of satisfaction with the contribution to overall disease management. Finally, several studies only included recurrent users in their analyses, which could falsely increase feasibility. Moreover, these recurrent users likely experienced positive effects of using digital health records, which would have resulted in an overestimation of effects in randomized studies with no intention-to-treat analysis and in all nonrandomized studies.

The voluntary adoption of patient-centered digital health records by patients might reflect an intrinsic, preexisting motivation for self-management and care engagement bias, which may overestimate their effects. Patient-centered digital health record use could even be considered a surrogate measure for engagement [109,124,125]. Thus, it might be best to consider digital health records as vehicles for empowerment, strengthening existing self-management capabilities [126,127].

The effects of using patient-centered digital health records on health outcomes are not always direct but often depend on intermediate steps. For example, requesting prescription refills might depend on the actions performed by (slow-responding) physicians, nurses, or pharmacies. Thus, if using a digital health record would have no observable effects on health outcomes, this could also be a result of these intermediate steps or unforeseen processes and may not be attributable to the use of the patient-centered digital health record. The proportion of beneficial effects reported in high-quality studies was lower as compared with all included studies for clinical outcomes (30% vs 42%), patient-reported outcomes (37% vs 45%), and health care utilization (33% vs 59%). Nevertheless, the proportions are clinically relevant and promising considering this newly emerging field. The observed differences might be related to 4 factors. First, the selection of motivated, well-educated, digitally minded participants might have overestimated the results in most low- and moderate-quality studies. Second, most studies did not measure ongoing user activity, and assumed that registered users became recurrent users. Third, nearly all low- and moderate-quality studies reported high dropout rates, which could overestimate acceptance rates. Finally, the lack of consensus on digital health record terminology hindered the interpretation of findings. We would advocate the use of uniform definitions, such as those presented in Textbox 1 [10,17-20].

Future Research

Future studies should adopt additional measures to adhere to a uniform taxonomy, use log data, and limit selection bias. The exclusion of less-engaged people could further expand the digital divide between patients who are digitally proficient and those who are not, resulting in an increasingly unequal distribution of care services. We suggest that researchers include a diverse population based on age, gender, disease burden, race, education level, and health literacy [128]. Finally, further research should focus on determining which functionalities are mostly responsible for the effects on the outcomes.

Conclusions

The use of patient-centered digital health records in chronic conditions is potentially associated with beneficial effects on several patient-reported outcomes and recommended care services in a considerable number of studied digital health records. The rates of the effects were approximately similar for different patient groups. Feasibility and acceptability were high. Our findings support further implementation of patient-centered digital health records in clinical practice. Yet, higher-quality research is needed to identify effects per disease category and per health outcome and to learn which patients might benefit from specific functionalities.

Acknowledgments

This project was supported by grants K23HL150232 (principal investigator [PI]: SMB) and K23HL141447 (PI: RMC) from the National Heart, Lung, and Blood Institute of the National Institutes of Health and by grant NWA.1160.18.038 (PI: MH Cnossen, WP leader SCG) of the Netherlands Organization for Scientific Research (NWO) for the SYMPHONY consortium. The content is solely the responsibility of the authors and does not necessarily represent National Institutes of Health or NWO.

Authors' Contributions

All authors were involved in the design of the research protocol. MB performed the search strategy. MRB and SMB assessed all titles, abstracts, and full texts for eligibility. SCG helped resolve the discussion if necessary. MRB and SMB performed data extraction and synthesis. All authors provided feedback on the manuscript and approved the final manuscript.

Conflicts of Interest

SCG received an unrestricted medical research grant from Sobi. The authors have no futher interests to declare.

Multimedia Appendix 1

The search strategy used, that includes terms related to the search categories: "patient," "intervention," and "outcome.". [DOCX File , 19 KB-Multimedia Appendix 1]

Multimedia Appendix 2

The 4 modified Joanna Briggs Institute critical appraisal tools used in this study. [DOCX File , 24 KB-Multimedia Appendix 2]

Multimedia Appendix 3

Proportion of beneficial effects reported per health outcome of all studies, presented per disease category. [DOCX File , 18 KB-Multimedia Appendix 3]

Multimedia Appendix 4

The proportion of beneficial effects reported per health outcome of 16 high quality studies, presented per disease category. [DOCX File, 26 KB-Multimedia Appendix 4]

References

- 1. Noncommunicable diseases. World Health Organization. 2021 Sep 16. URL: <u>https://www.who.int/news-room/fact-sheets/</u><u>detail/noncommunicable-diseases</u> [accessed 2022-12-01]
- 2. Benziger CP, Roth GA, Moran AE. The global burden of disease study and the preventable burden of NCD. Glob Heart 2016 Dec;11(4):393-397 [FREE Full text] [doi: 10.1016/j.gheart.2016.10.024] [Medline: 27938824]
- 3. Buttorff C, Ruder T, Bauman M. Multiple Chronic Conditions in the United States. Santa Monica, CA, USA: RAND Corporation; 2017.
- Schulman-Green D, Jaser S, Martin F, Alonzo A, Grey M, McCorkle R, et al. Processes of self-management in chronic illness. J Nurs Scholarsh 2012 Jun;44(2):136-144 [FREE Full text] [doi: 10.1111/j.1547-5069.2012.01444.x] [Medline: 22551013]
- Chen S, Kuhn M, Prettner K, Bloom DE. The macroeconomic burden of noncommunicable diseases in the United States: estimates and projections. PLoS One 2018 Nov 1;13(11):e0206702 [FREE Full text] [doi: 10.1371/journal.pone.0206702] [Medline: 30383802]
- 6. The Complexities of Physician Supply and Demand: Projections From 2019 to 2034. Association of American Medical Colleges. 2021 Jun. URL: <u>https://tinyurl.com/yfren872</u> [accessed 2022-09-01]
- 7. European Commission, Directorate-General for Employment, Social Affairs and Inclusion, McGrath J. Analysis of Shortage and Surplus Occupations 2020. Luxembourg, Luxembourg: Publications Office of the European Union; 2020.
- Medical staffing in England: a defining moment for doctors and patients. British Medical Association. 2021 Jul 11. URL: <u>https://www.pslhub.org/learn/improving-patient-safety/workforce-and-resources/safe-staffing-levels/</u> medical-staffing-in-england-a-defining-moment-for-doctors-and-patients-bma-11-july-2021-r4856/ [accessed 2022-09-01]
- 9. COVID-19 continues to disrupt essential health services in 90% of countries. World Health Organization. 2021 Apr 23. URL: <u>https://www.who.int/news/item/</u> 23-04-2021-covid-19-continues-to-disrupt-essential-health-services-in-90-of-countries#:~:text=The%20second%20round%20of%20 a,since%20the%20first%20survey%20conducted [accessed 2022-09-01]
- Lancaster K, Abuzour A, Khaira M, Mathers A, Chan A, Bui V, et al. The use and effects of electronic health tools for patient self-monitoring and reporting of outcomes following medication use: systematic review. J Med Internet Res 2018 Dec 18;20(12):e294 [FREE Full text] [doi: 10.2196/jmir.9284] [Medline: 30563822]
- 11. Risling T, Martinez J, Young J, Thorp-Froslie N. Evaluating patient empowerment in association with eHealth technology: scoping review. J Med Internet Res 2017 Sep 29;19(9):e329 [FREE Full text] [doi: 10.2196/jmir.7809] [Medline: 28963090]
- 12. Barello S, Triberti S, Graffigna G, Libreri C, Serino S, Hibbard J, et al. eHealth for patient engagement: a systematic review. Front Psychol 2016 Jan 8;6:2013 [FREE Full text] [doi: 10.3389/fpsyg.2015.02013] [Medline: 26779108]
- Morton K, Dennison L, May C, Murray E, Little P, McManus RJ, et al. Using digital interventions for self-management of chronic physical health conditions: a meta-ethnography review of published studies. Patient Educ Couns 2017 Apr;100(4):616-635 [FREE Full text] [doi: 10.1016/j.pec.2016.10.019] [Medline: 28029572]
- Mc Namara KP, Versace VL, Marriott JL, Dunbar JA. Patient engagement strategies used for hypertension and their influence on self-management attributes. Fam Pract 2014 Aug;31(4):437-444. [doi: <u>10.1093/fampra/cmu026</u>] [Medline: <u>24895137</u>]
- 15. Greene J, Hibbard JH, Sacks R, Overton V, Parrotta CD. When patient activation levels change, health outcomes and costs change, too. Health Aff (Millwood) 2015 Mar;34(3):431-437. [doi: 10.1377/hlthaff.2014.0452] [Medline: 25732493]

- Peters AE, Keeley EC. Patient engagement following acute myocardial infarction and its influence on outcomes. Am J Cardiol 2017 Nov 01;120(9):1467-1471. [doi: <u>10.1016/j.amjcard.2017.07.037</u>] [Medline: <u>28843395</u>]
- 17. What are the differences between EHMRs, EHRs and PHRs? HealthIT.gov. 2019. URL: <u>https://www.healthit.gov/faq/what-are-differences-between-electronic-medical-records-electronic-health-records-and-personal [accessed 2022-12-01]</u>
- 18. A HIMSS Guide to Participating in a Health Information Exchange: HIMSS Healthcare Information Exchange HIE Guide Work Group White Paper. Healthcare Information and Management Systems Society (HIMSS). 2009 Aug. URL: <u>https://assets.hln.com/pdf/</u> <u>HIMSS-HIEGuideWhitePaper.pdf?utm_source=legacy&utm_medium=redirect&utm_campaign=webmig21&utm_term=pdf/</u>

HIMSS-HIEGuideWhitePaper.pdf?utm_source=legacy&utm_medium=redirect&utm_campaign=webmig21&utm_term=pdf/ HIMSS-HIEGuideWhitePaper.pdf [accessed 2022-09-01]

- Tang PC, Ash JS, Bates DW, Overhage JM, Sands DZ. Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. J Am Med Inform Assoc 2006;13(2):121-126 [FREE Full text] [doi: 10.1197/jamia.M2025] [Medline: 16357345]
- 20. Safran C, Bloomrosen M, Hammond WE, Labkoff S, Markel-Fox S, Tang PC, Expert Panel. Toward a national framework for the secondary use of health data: an American Medical Informatics Association White Paper. J Am Med Inform Assoc 2007;14(1):1-9 [FREE Full text] [doi: 10.1197/jamia.M2273] [Medline: 17077452]
- 21. Cronin RM, Jimison H, Johnson KB. Personal health informatics. In: Shortliffe EH, Cimino JJ, editors. Biomedical Informatics: Computer Applications in Health Care and Biomedicine. Cham, Switzerland: Springer; 2021:363-389.
- 22. MedMij | Dutch Personal Health Environment. URL: <u>https://medmij.nl/en/home/</u> [accessed 2022-12-01]
- 23. Ammenwerth E, Schnell-Inderst P, Hoerbst A. The impact of electronic patient portals on patient care: a systematic review of controlled trials. J Med Internet Res 2012 Nov 26;14(6):e162 [FREE Full text] [doi: 10.2196/jmir.2238] [Medline: 23183044]
- 24. Andrikopoulou E, Scott P, Herrera H, Good A. What are the important design features of personal health records to improve medication adherence for patients with long-term conditions? A systematic literature review. BMJ Open 2019 Sep 26;9(9):e028628 [FREE Full text] [doi: 10.1136/bmjopen-2018-028628] [Medline: 31558449]
- 25. Kruse CS, Bolton K, Freriks G. The effect of patient portals on quality outcomes and its implications to meaningful use: a systematic review. J Med Internet Res 2015 Feb 10;17(2):e44 [FREE Full text] [doi: 10.2196/jmir.3171] [Medline: 25669240]
- 26. Dendere R, Slade C, Burton-Jones A, Sullivan C, Staib A, Janda M. Patient portals facilitating engagement with inpatient electronic medical records: a systematic review. J Med Internet Res 2019 Apr 11;21(4):e12779 [FREE Full text] [doi: 10.2196/12779] [Medline: 30973347]
- Goldzweig GL, Orshansky G, Paige NM, Towfigh AA, Haggstrom DA, Miake-Lye I, et al. Electronic patient portals: evidence on health outcomes, satisfaction, efficiency, and attitudes: a systematic review. Ann Intern Med 2013 Nov 19;159(10):677-687. [doi: 10.7326/0003-4819-159-10-201311190-00006] [Medline: 24247673]
- 28. Han HR, Gleason KT, Sun CA, Miller HN, Kang SJ, Chow S, et al. Using patient portals to improve patient outcomes: systematic review. JMIR Hum Factors 2019 Dec 19;6(4):e15038 [FREE Full text] [doi: 10.2196/15038] [Medline: 31855187]
- 29. Brands M, Gouw S, Beestrum M, Fijnvandraat K, Badawy S. Patient-centered digital health interventions and their effects on health outcomes: a systematic review. CRD42020213285. PROSPERO. 2020. URL: <u>https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=213285</u> [accessed 2022-12-01]
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021 Mar 29;372:n71 [FREE Full text] [doi: 10.1136/bmj.n71] [Medline: 33782057]
- Price M, Bellwood P, Kitson N, Davies I, Weber J, Lau F. Conditions potentially sensitive to a personal health record (PHR) intervention, a systematic review. BMC Med Inform Decis Mak 2015 Apr 18;15:32 [FREE Full text] [doi: 10.1186/s12911-015-0159-1] [Medline: 25927384]
- 32. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 2011 Mar 15;173(6):676-682. [doi: 10.1093/aje/kwq433] [Medline: 21330339]
- Hibbard JH, Stockard J, Mahoney ER, Tusler M. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv Res 2004 Aug;39(4 Pt 1):1005-1026 [FREE Full text] [doi: 10.1111/j.1475-6773.2004.00269.x] [Medline: 15230939]
- 34. Vahdat S, Hamzehgardeshi L, Hessam S, Hamzehgardeshi Z. Patient involvement in health care decision making: a review. Iran Red Crescent Med J 2014 Jan;16(1):e12454 [FREE Full text] [doi: 10.5812/ircmj.12454] [Medline: 24719703]
- 35. Fitzgerald JT, Funnell MM, Hess GE, Barr PA, Anderson RM, Hiss RG, et al. The reliability and validity of a brief diabetes knowledge test. Diabetes Care 1998 May;21(5):706-710. [doi: <u>10.2337/diacare.21.5.706</u>] [Medline: <u>9589228</u>]
- 36. Shmueli A. The SF-36 profile and health-related quality of life: an interpretative analysis. Qual Life Res 1998 Apr;7(3):187-195. [doi: 10.1023/a:1024959508246] [Medline: 9584548]
- Barroso NE, Hungerford GM, Garcia D, Graziano PA, Bagner DM. Psychometric properties of the Parenting Stress Index-Short Form (PSI-SF) in a high-risk sample of mothers and their infants. Psychol Assess 2016 Oct;28(10):1331-1335 [FREE Full text] [doi: 10.1037/pas0000257] [Medline: 26595220]

- 38. Adherence to Long-Term Therapies: Evidence for Action. World Health Organization. 2003. URL: <u>http://apps.who.int/iris/</u> <u>bitstream/handle/10665/42682/9241545992.pdf?sequence=1</u> [accessed 2022-09-01]
- 39. Data collection form for intervention reviews for RCTs and non-RCTs template. Version 3. Cochrane Collaboration. 2014. URL: <u>https://dplp.cochrane.org/sites/dplp.cochrane.org/files/public/uploads/</u> CDPLPG%20data%20collection%20form%20for%20intervention%20reviews%20for%20RCTs%20and%20non-RCTs. <u>doc</u> [accessed 2022-09-01]
- 40. Critical Appraisal Tools. Joanna Briggs Institute. URL: https://jbi.global/critical-appraisal-tools [accessed 2022-09-01]
- 41. Bailey SC, Wallia A, Wright S, Wismer GA, Infanzon AC, Curtis LM, et al. Electronic health record-based strategy to promote medication adherence among patients with diabetes: longitudinal observational study. J Med Internet Res 2019 Oct 21;21(10):e13499 [FREE Full text] [doi: 10.2196/13499] [Medline: 31638592]
- 42. Boogerd E, Maas-Van Schaaijk NM, Sas TC, Clement-de Boers A, Smallenbroek M, Nuboer R, et al. Sugarsquare, a Web-based patient portal for parents of a child with type 1 diabetes: multicenter randomized controlled feasibility trial. J Med Internet Res 2017 Aug 22;19(8):e287 [FREE Full text] [doi: 10.2196/jmir.6639] [Medline: 28830853]
- 43. Byczkowski TL, Munafo JK, Britto MT. Family perceptions of the usability and value of chronic disease web-based patient portals. Health Informatics J 2014 Jun;20(2):151-162 [FREE Full text] [doi: 10.1177/1460458213489054] [Medline: 24056751]
- 44. Chung S, Panattoni L, Chi J, Palaniappan L. Can secure patient-provider messaging improve diabetes care? Diabetes Care 2017 Oct;40(10):1342-1348. [doi: 10.2337/dc17-0140] [Medline: 28807977]
- 45. Conway NT, Allardice B, Wake DJ, Cunningham SG. User experiences of an electronic personal health record for diabetes. J Diabetes Sci Technol 2019 Jul;13(4):744-750 [FREE Full text] [doi: 10.1177/1932296818818837] [Medline: 30585085]
- 46. Devkota B, Salas J, Sayavong S, Scherrer JF. Use of an online patient portal and glucose control in primary care patients with diabetes. Popul Health Manag 2016 Apr;19(2):125-131. [doi: 10.1089/pop.2015.0034] [Medline: 26237200]
- Dixon BE, Alzeer AH, Phillips EO, Marrero DG. Integration of provider, pharmacy, and patient-reported data to improve medication adherence for type 2 diabetes: a controlled before-after pilot study. JMIR Med Inform 2016 Feb 08;4(1):e4 [FREE Full text] [doi: 10.2196/medinform.4739] [Medline: 26858218]
- 48. Graetz I, Huang J, Brand RJ, Hsu J, Yamin CK, Reed ME. Bridging the digital divide: mobile access to personal health records among patients with diabetes. Am J Manag Care 2018 Jan;24(1):43-48 [FREE Full text] [Medline: 29350505]
- 49. Graetz I, Huang J, Muelly ER, Fireman B, Hsu J, Reed ME. Association of mobile patient portal access with diabetes medication adherence and glycemic levels among adults with diabetes. JAMA Netw Open 2020 Mar 05;3(2):e1921429 [FREE Full text] [doi: 10.1001/jamanetworkopen.2019.21429] [Medline: 32074289]
- 50. Grant RW, Wald JS, Schnipper JL, Gandhi TK, Poon EG, Orav EJ, et al. Practice-linked online personal health records for type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 2008 Sep 08;168(16):1776-1782 [FREE Full text] [doi: 10.1001/archinte.168.16.1776] [Medline: 18779465]
- 51. Lau M, Campbell H, Tang T, Thompson DJ, Elliott T. Impact of patient use of an online patient portal on diabetes outcomes. Can J Diabetes 2014 Mar;38(1):17-21. [doi: <u>10.1016/j.jcjd.2013.10.005</u>] [Medline: <u>24485208</u>]
- Lyles CR, Sarkar U, Schillinger D, Ralston JD, Allen JY, Nguyen R, et al. Refilling medications through an online patient portal: consistent improvements in adherence across racial/ethnic groups. J Am Med Inform Assoc 2016 Apr;23(e1):e28-e33 [FREE Full text] [doi: 10.1093/jamia/ocv126] [Medline: 26335983]
- 53. Martinez W, Hackstadt AJ, Hickson GB, Knoerl T, Rosenbloom ST, Wallston KA, et al. The my diabetes care patient portal intervention: usability and pre-post assessment. Appl Clin Inform 2021 May;12(3):539-550 [FREE Full text] [doi: 10.1055/s-0041-1730324] [Medline: 34192774]
- 54. McCarrier KP, Ralston JD, Hirsch IB, Lewis G, Martin DP, Zimmerman FJ, et al. Web-based collaborative care for type 1 diabetes: a pilot randomized trial. Diabetes Technol Ther 2009 Apr;11(4):211-217 [FREE Full text] [doi: 10.1089/dia.2008.0063] [Medline: 19344195]
- Osborn CY, Mayberry LS, Wallston KA, Johnson KB, Elasy TA. Understanding patient portal use: implications for medication management. J Med Internet Res 2013 Jul 03;15(7):e133 [FREE Full text] [doi: <u>10.2196/jmir.2589</u>] [Medline: <u>23823974</u>]
- 56. Price-Haywood EG, Luo Q. Primary care practice reengineering and associations with patient portal use, service utilization, and disease control among patients with hypertension and/or diabetes. Ochsner J 2017;17(1):103-111 [FREE Full text] [Medline: 28331456]
- Price-Haywood EG, Luo Q, Monlezun D. Dose effect of patient-care team communication via secure portal messaging on glucose and blood pressure control. J Am Med Inform Assoc 2018 Jun 01;25(6):702-708 [FREE Full text] [doi: 10.1093/jamia/ocx161] [Medline: 29444256]
- 58. Quinn CC, Butler EC, Swasey KK, Shardell MD, Terrin MD, Barr EA, et al. Mobile diabetes intervention study of patient engagement and impact on blood glucose: mixed methods analysis. JMIR Mhealth Uhealth 2018 Mar 02;6(2):e31 [FREE Full text] [doi: 10.2196/mhealth.9265] [Medline: 29396389]
- 59. Reed M, Graetz I, Gordon N, Fung V. Patient-initiated e-mails to providers: associations with out-of-pocket visit costs, and impact on care-seeking and health. Am J Manag Care 2015 Dec 01;21(12):e632-e639 [FREE Full text] [Medline: 26760425]

- Reed ME, Huang J, Brand RJ, Neugebauer R, Graetz I, Hsu J, et al. Patients with complex chronic conditions: health care use and clinical events associated with access to a patient portal. PLoS One 2019 Jun 19;14(6):e0217636 [FREE Full text] [doi: 10.1371/journal.pone.0217636] [Medline: 31216295]
- 61. Reed ME, Huang J, Millman A, Graetz I, Hsu J, Brand R, et al. Portal use among patients with chronic conditions: patient-reported care experiences. Med Care 2019 Oct;57(10):809-814. [doi: 10.1097/MLR.000000000001178] [Medline: 31415340]
- 62. Riippa I, Linna M, Rönkkö I. The effect of a patient portal with electronic messaging on patient activation among chronically ill patients: controlled before-and-after study. J Med Internet Res 2014 Nov 19;16(11):e257 [FREE Full text] [doi: 10.2196/jmir.3462] [Medline: 25413368]
- 63. Riippa I, Linna M, Rönkkö I. A patient portal with electronic messaging: controlled before-and-after study. J Med Internet Res 2015 Nov 09;17(11):e250 [FREE Full text] [doi: 10.2196/jmir.4487] [Medline: 26553595]
- Robinson SA, Zocchi MS, Netherton D, Ash A, Purington CM, Connolly SL, et al. Secure messaging, diabetes self-management, and the importance of patient autonomy: a mixed methods study. J Gen Intern Med 2020 Oct;35(10):2955-2962 [FREE Full text] [doi: 10.1007/s11606-020-05834-x] [Medline: 32440998]
- 65. Ronda MC, Dijkhorst-Oei LT, Rutten GE. Reasons and barriers for using a patient portal: survey among patients with diabetes mellitus. J Med Internet Res 2014 Nov 25;16(11):e263 [FREE Full text] [doi: 10.2196/jmir.3457] [Medline: 25424228]
- 66. Ronda MC, Dijkhorst-Oei LT, Rutten GE. Patients' experiences with and attitudes towards a diabetes patient web portal. PLoS One 2015 Jun 18;10(6):e0129403 [FREE Full text] [doi: 10.1371/journal.pone.0129403] [Medline: 26086272]
- 67. Sabo R, Robins J, Lutz S, Kashiri P, Day T, Webel B, et al. Diabetes engagement and activation platform for implementation and effectiveness of automated virtual type 2 diabetes self-management education: randomized controlled trial. JMIR Diabetes 2021 Mar 29;6(1):e26621 [FREE Full text] [doi: 10.2196/26621] [Medline: 33779567]
- 68. Sarkar U, Lyles CR, Parker MM, Allen J, Nguyen R, Moffet HH, et al. Use of the refill function through an online patient portal is associated with improved adherence to statins in an integrated health system. Med Care 2014 Mar;52(3):194-201 [FREE Full text] [doi: 10.1097/MLR.0000000000000069] [Medline: 24374412]
- Seo D, Park YR, Lee Y, Kim JY, Park JY, Lee JH. The use of mobile personal health records for hemoglobin A1c regulation in patients with diabetes: retrospective observational study. J Med Internet Res 2020 Jun 02;22(6):e15372 [FREE Full text] [doi: 10.2196/15372] [Medline: 32484447]
- 70. Sharit J, Idrees T, Andrade AD, Anam R, Karanam C, Valencia W, et al. Use of an online personal health record's Track Health function to promote positive lifestyle behaviors in Veterans with prediabetes. J Health Psychol 2018 Apr;23(5):681-690. [doi: 10.1177/1359105316681065] [Medline: 27920356]
- Shimada SL, Allison JJ, Rosen AK, Feng H, Houston TK. Sustained use of patient portal features and improvements in diabetes physiological measures. J Med Internet Res 2016 Jul 01;18(7):e179 [FREE Full text] [doi: 10.2196/jmir.5663] [Medline: 27369696]
- 72. Tenforde M, Nowacki A, Jain A, Hickner J. The association between personal health record use and diabetes quality measures. J Gen Intern Med 2012 Apr;27(4):420-424 [FREE Full text] [doi: 10.1007/s11606-011-1889-0] [Medline: 22005937]
- 73. van Vugt M, de Wit M, Sieverink F, Roelofsen Y, Hendriks SH, Bilo HJ, et al. Uptake and effects of the e-vita personal health record with self-management support and coaching, for type 2 diabetes patients treated in primary care. J Diabetes Res 2016;2016:5027356 [FREE Full text] [doi: 10.1155/2016/5027356] [Medline: 26955640]
- 74. Vo MT, Uratsu CS, Estacio KR, Altschuler A, Kim E, Alexeeff SE, et al. Prompting patients with poorly controlled diabetes to identify visit priorities before primary care visits: a pragmatic cluster randomized trial. J Gen Intern Med 2019 Jun;34(6):831-838 [FREE Full text] [doi: 10.1007/s11606-018-4756-4] [Medline: 30746642]
- 75. Wald JS, Grant RW, Schnipper JL, Gandhi TK, Poon EG, Businger AC, et al. Survey analysis of patient experience using a practice-linked PHR for type 2 diabetes mellitus. AMIA Annu Symp Proc 2009 Nov 14;2009:678-682 [FREE Full text] [Medline: 20351940]
- Zocchi MS, Robinson SA, Ash AS, Vimalananda VG, Wolfe HL, Hogan TP, et al. Patient portal engagement and diabetes management among new portal users in the Veterans Health Administration. J Am Med Inform Assoc 2021 Sep 18;28(10):2176-2183 [FREE Full text] [doi: 10.1093/jamia/ocab115] [Medline: 34339500]
- 77. Druss BG, Li J, Tapscott S, Lally CA. Randomized trial of a mobile personal health record for behavioral health homes. Psychiatr Serv 2020 Aug 01;71(8):803-809 [FREE Full text] [doi: 10.1176/appi.ps.201900381] [Medline: 32362226]
- 78. Aberger EW, Migliozzi D, Follick MJ, Malick T, Ahern DK. Enhancing patient engagement and blood pressure management for renal transplant recipients via home electronic monitoring and web-enabled collaborative care. Telemed J E Health 2014 Sep;20(9):850-854 [FREE Full text] [doi: 10.1089/tmj.2013.0317] [Medline: 25046403]
- 79. Ahmed S, Ernst P, Bartlett SJ, Valois MF, Zaihra T, Paré G, et al. The effectiveness of web-based asthma self-management system, my asthma portal (MAP): a pilot randomized controlled trial. J Med Internet Res 2016 Dec 01;18(12):e313 [FREE Full text] [doi: 10.2196/jmir.5866] [Medline: 27908846]

```
https://www.jmir.org/2022/12/e43086
```

- Apter AJ, Localio AR, Morales KH, Han X, Perez L, Mullen AN, et al. Home visits for uncontrolled asthma among low-income adults with patient portal access. J Allergy Clin Immunol 2019 Sep;144(3):846-53.e11 [FREE Full text] [doi: 10.1016/j.jaci.2019.05.030] [Medline: <u>31181221</u>]
- Fiks AG, Mayne SL, Karavite DJ, Suh A, O'Hara R, Localio AR, et al. Parent-reported outcomes of a shared decision-making portal in asthma: a practice-based RCT. Pediatrics 2015 Apr;135(4):e965-e973 [FREE Full text] [doi: 10.1542/peds.2014-3167] [Medline: 25755233]
- Fiks AG, DuRivage N, Mayne SL, Finch S, Ross ME, Giacomini K, et al. Adoption of a portal for the primary care management of pediatric asthma: a mixed-methods implementation study. J Med Internet Res 2016 Jun 29;18(6):e172 [FREE Full text] [doi: 10.2196/jmir.5610] [Medline: 27357835]
- 83. Kogut SJ, Goldstein E, Charbonneau C, Jackson A, Patry G. Improving medication management after a hospitalization with pharmacist home visits and electronic personal health records: an observational study. Drug Healthc Patient Saf 2014 Jan 17;6:1-6 [FREE Full text] [doi: 10.2147/DHPS.S56574] [Medline: 24465136]
- 84. Kim JW, Ryu B, Cho S, Heo E, Kim Y, Lee J, et al. Impact of personal health records and wearables on health outcomes and patient response: three-arm randomized controlled trial. JMIR Mhealth Uhealth 2019 Jan 04;7(1):e12070 [FREE Full text] [doi: 10.2196/12070] [Medline: 30609978]
- Lau AY, Arguel A, Dennis S, Liaw ST, Coiera E. "Why didn't it work?" Lessons from a randomized controlled trial of a web-based personally controlled health management system for adults with asthma. J Med Internet Res 2015 Dec 15;17(12):e283 [FREE Full text] [doi: 10.2196/jmir.4734] [Medline: 26678294]
- 86. Manard W, Scherrer JF, Salas J, Schneider FD. Patient portal use and blood pressure control in newly diagnosed hypertension. J Am Board Fam Med 2016;29(4):452-459 [FREE Full text] [doi: 10.3122/jabfm.2016.04.160008] [Medline: 27390376]
- 87. Toscos T, Coupe A, Wagner S, Ahmed R, Roebuck A, Flanagan M, et al. Engaging patients in atrial fibrillation management via digital health technology: the impact of tailored messaging. J Innov Card Rhythm Manag 2020 Aug;11(8):4209-4217 [FREE Full text] [doi: 10.19102/icrm.2020.110802] [Medline: 32874747]
- 88. Wagner PJ, Dias J, Howard S, Kintziger KW, Hudson MF, Seol Y, et al. Personal health records and hypertension control: a randomized trial. J Am Med Inform Assoc 2012;19(4):626-634 [FREE Full text] [doi: 10.1136/amiajnl-2011-000349] [Medline: 22234404]
- Martínez Nicolás I, Lê Cook B, Flores M, Del Olmo Rodriguez M, Hernández Rodríguez C, Llamas Sillero P, et al. The impact of a comprehensive electronic patient portal on the health service use: an interrupted time-series analysis. Eur J Public Health 2019 Jun 01;29(3):413-418. [doi: 10.1093/eurpub/cky257] [Medline: 30544169]
- 90. Cahill JE, Lin L, LoBiondo-Wood G, Armstrong TS, Acquaye AA, Vera-Bolanos E, et al. Personal health records, symptoms, uncertainty, and mood in brain tumor patients. Neurooncol Pract 2014 Jun;1(2):64-70 [FREE Full text] [doi: 10.1093/nop/npu005] [Medline: 26034618]
- Chiche L, Brescianini A, Mancini J, Servy H, Durand JM. Evaluation of a prototype electronic personal health record for patients with idiopathic thrombocytopenic purpura. Patient Prefer Adherence 2012;6:725-734 [FREE Full text] [doi: 10.2147/PPA.S36320] [Medline: 23077409]
- 92. Collins PW, Bolton-Maggs P, Stephenson D, Jenkins B, Loran C, Winter M. Pilot study of an Internet-based electronic patient treatment record and communication system for haemophilia, Advoy.com. Haemophilia 2003 May;9(3):285-291. [doi: 10.1046/j.1365-2516.2003.00747.x] [Medline: 12694519]
- Coquet J, Blayney DW, Brooks JD, Hernandez-Boussard T. Association between patient-initiated emails and overall 2-year survival in cancer patients undergoing chemotherapy: evidence from the real-world setting. Cancer Med 2020 Nov;9(22):8552-8561 [FREE Full text] [doi: 10.1002/cam4.3483] [Medline: 32986931]
- 94. Groen WG, Kuijpers W, Oldenburg HS, Wouters MW, Aaronson NK, van Harten WH. Supporting lung cancer patients with an interactive patient portal: feasibility study. JMIR Cancer 2017 Aug 08;3(2):e10 [FREE Full text] [doi: 10.2196/cancer.7443] [Medline: 28790025]
- 95. Hall MJ, Herda MM, Handorf EA, Rybak CC, Keleher CA, Siemon M, et al. Direct-to-patient disclosure of results of mismatch repair screening for Lynch syndrome via electronic personal health record: a feasibility study. Genet Med 2014 Nov;16(11):854-861 [FREE Full text] [doi: 10.1038/gim.2014.42] [Medline: 24784156]
- Hong MK, Wilcox L, Feustel C, Wasileski-Masker K, Olson TA, Simoneaux SF. Adolescent and caregiver use of a tethered personal health record system. AMIA Annu Symp Proc 2016 Feb 10;2016:628-637 [FREE Full text] [Medline: <u>28269859</u>]
- 97. Kidwell KM, Peugh J, Westcott E, Nwankwo C, Britto MT, Quinn CT, et al. Acceptability and feasibility of a disease-specific patient portal in adolescents with sickle cell disease. J Pediatr Hematol Oncol 2019 Oct;41(7):561-567 [FREE Full text] [doi: 10.1097/MPH.00000000001341] [Medline: 30339657]
- 98. O'Hea EL, Creamer S, Flahive JM, Keating BA, Crocker CR, Williamson SR, et al. Survivorship care planning, quality of life, and confidence to transition to survivorship: a randomized controlled trial with women ending treatment for breast cancer. J Psychosoc Oncol 2022;40(5):574-594. [doi: 10.1080/07347332.2021.1936336] [Medline: 34151734]
- 99. Pai HH, Lau F, Barnett J, Jones S. Meeting the health information needs of prostate cancer patients using personal health records. Curr Oncol 2013 Dec;20(6):e561-e569 [FREE Full text] [doi: 10.3747/co.20.1584] [Medline: 24311957]

- Tarver WL, Robb BW, Haggstrom DA. Usefulness and usability of a personal health record and survivorship care plan for colorectal cancer survivors: survey study. JMIR Cancer 2019 Aug 20;5(2):e10692 [FREE Full text] [doi: 10.2196/10692] [Medline: 31432780]
- 101. Wiljer D, Leonard KJ, Urowitz S, Apatu E, Massey C, Quartey NK, et al. The anxious wait: assessing the impact of patient accessible EHRs for breast cancer patients. BMC Med Inform Decis Mak 2010 Sep 01;10:46 [FREE Full text] [doi: 10.1186/1472-6947-10-46] [Medline: 20809950]
- 102. Williamson RS, Cherven BO, Gilleland Marchak J, Edwards P, Palgon M, Escoffery C, et al. Meaningful use of an electronic personal health record (ePHR) among pediatric cancer survivors. Appl Clin Inform 2017 Mar 15;8(1):250-264 [FREE Full text] [doi: 10.4338/ACI-2016-11-RA-0189] [Medline: 28293684]
- 103. Anand T, Nitpolprasert C, Kerr SJ, Apornpong T, Ananworanich J, Phanuphak P, et al. Implementation of an online HIV prevention and treatment cascade in Thai men who have sex with men and transgender women using Adam's Love Electronic Health Record system. J Virus Erad 2017 Jan 01;3(1):15-23 [FREE Full text] [Medline: <u>28275454</u>]
- 104. Bidmead E, Marshall A. A case study of stakeholder perceptions of patient held records: the Patients Know Best (PKB) solution. Digit Health 2016 Sep 21;2:2055207616668431 [FREE Full text] [doi: 10.1177/2055207616668431] [Medline: 29942567]
- 105. Crouch PB, Rose CD, Johnson M, Janson SL. A pilot study to evaluate the magnitude of association of the use of electronic personal health records with patient activation and empowerment in HIV-infected veterans. PeerJ 2015 Mar 19;3:e852 [FREE Full text] [doi: 10.7717/peerj.852] [Medline: 25802815]
- 106. Druss BG, Ji X, Glick G, von Esenwein SA. Randomized trial of an electronic personal health record for patients with serious mental illnesses. Am J Psychiatry 2014 Mar;171(3):360-368. [doi: <u>10.1176/appi.ajp.2013.13070913</u>] [Medline: <u>24435025</u>]
- 107. Jhamb M, Cavanaugh KL, Bian A, Chen G, Ikizler TA, Unruh ML, et al. Disparities in electronic health record patient portal use in nephrology clinics. Clin J Am Soc Nephrol 2015 Nov 06;10(11):2013-2022 [FREE Full text] [doi: 10.2215/CJN.01640215] [Medline: 26493242]
- 108. Kahn JS, Hilton JF, Van Nunnery T, Leasure S, Bryant KM, Hare CB, et al. Personal health records in a public hospital: experience at the HIV/AIDS clinic at San Francisco General Hospital. J Am Med Inform Assoc 2010;17(2):224-228 [FREE Full text] [doi: 10.1136/jamia.2009.000315] [Medline: 20190069]
- 109. Keith McInnes D, Shimada SL, Rao SR, Quill A, Duggal M, Gifford AL, et al. Personal health record use and its association with antiretroviral adherence: survey and medical record data from 1871 US veterans infected with HIV. AIDS Behav 2013 Nov;17(9):3091-3100. [doi: 10.1007/s10461-012-0399-3] [Medline: 23334359]
- 110. McInnes DK, Shimada SL, Midboe AM, Nazi KM, Zhao S, Wu J, et al. Patient use of electronic prescription refill and secure messaging and its association with undetectable HIV viral load: a retrospective cohort study. J Med Internet Res 2017 Mar 15;19(2):e34 [FREE Full text] [doi: 10.2196/jmir.6932] [Medline: 28202428]
- 111. Kiberd J, Khan U, Stockman C, Radhakrishnan A, Phillips M, Kiberd BA, et al. Effectiveness of a web-based eHealth portal for delivery of care to home dialysis patients: a single-arm pilot study. Can J Kidney Health Dis 2018 Sep 7;5:2054358118794415 [FREE Full text] [doi: 10.1177/2054358118794415] [Medline: 30210802]
- 112. Lee J, Kim JG, Jin M, Ahn K, Kim B, Kim S, et al. Beneficial effects of two types of personal health record services connected with electronic medical records within the hospital setting. Comput Inform Nurs 2017 Nov;35(11):574-581. [doi: 10.1097/CIN.00000000000362] [Medline: 28548973]
- 113. Miller DM, Moore SM, Fox RJ, Atreja A, Fu AZ, Lee JC, et al. Web-based self-management for patients with multiple sclerosis: a practical, randomized trial. Telemed J E Health 2011;17(1):5-13 [FREE Full text] [doi: 10.1089/tmj.2010.0133] [Medline: 21214498]
- 114. Navaneethan SD, Jolly SE, Schold JD, Arrigain S, Nakhoul G, Konig V, et al. Pragmatic randomized, controlled trial of patient navigators and enhanced personal health records in CKD. Clin J Am Soc Nephrol 2017 Sep 07;12(9):1418-1427 [FREE Full text] [doi: 10.2215/CJN.02100217] [Medline: 28778854]
- 115. Plimpton E. A quality improvement project to increase patient portal enrollment and utilization in women living with HIV at risk for disengagement in care. J Assoc Nurses AIDS Care 2020;31(1):60-65. [doi: <u>10.1097/JNC.000000000000153</u>] [Medline: <u>31834101</u>]
- 116. Reich J, Canakis A, Shankar D, Harrington J, Apte M, Weinberg J, et al. The use of an EHR patient portal (Mychart-Epic) in patients with inflammatory bowel disease. Crohn's Colitis 360 2019 Oct;1(3):otz039. [doi: <u>10.1093/crocol/otz039</u>]
- Nielsen AS, Halamka JD, Kinkel RP. Internet portal use in an academic multiple sclerosis center. J Am Med Inform Assoc 2012;19(1):128-133 [FREE Full text] [doi: 10.1136/amiajnl-2011-000177] [Medline: 21571744]
- 118. Son H, Nahm ES. Older adults' experience using patient portals in communities: challenges and opportunities. Comput Inform Nurs 2019 Jan;37(1):4-10. [doi: 10.1097/CIN.00000000000476] [Medline: 30188353]
- 119. Tom JO, Mangione-Smith R, Solomon C, Grossman DC. Integrated personal health record use: association with parent-reported care experiences. Pediatrics 2012 Jul;130(1):e183-e190. [doi: <u>10.1542/peds.2011-1786</u>] [Medline: <u>22689872</u>]
- 120. van den Heuvel SC, Meije D, Regeer EJ, Sinnema H, Riemersma RF, Kupka RW. The user experiences and clinical outcomes of an online personal health record to support self-management of bipolar disorder: a pretest-posttest pilot study. J Affect Disord 2018 Oct 01;238:261-268. [doi: 10.1016/j.jad.2018.05.069] [Medline: 29894931]

- 121. van der Vaart R, Drossaert CH, Taal E, Drossaers-Bakker KW, Vonkeman HE, van de Laar MA. Impact of patient-accessible electronic medical records in rheumatology: use, satisfaction and effects on empowerment among patients. BMC Musculoskelet Disord 2014 Mar 26;15:102 [FREE Full text] [doi: 10.1186/1471-2474-15-102] [Medline: 24673997]
- 122. Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 2020 Jan 16;368:16890 [FREE Full text] [doi: 10.1136/bmj.16890] [Medline: 31948937]
- 123. Dunsch F, Evans DK, Macis M, Wang Q. Bias in patient satisfaction surveys: a threat to measuring healthcare quality. BMJ Glob Health 2018 Apr 12;3(2):e000694 [FREE Full text] [doi: 10.1136/bmjgh-2017-000694] [Medline: 29662696]
- 124. Hanna L, Gill SD, Newstead L, Hawkins M, Osborne RH. Patient perspectives on a personally controlled electronic health record used in regional Australia. Health Inf Manag 2017 Jan;46(1):42-48. [doi: <u>10.1177/1833358316661063</u>] [Medline: <u>27486184</u>]
- 125. Fylan F, Caveney L, Cartwright A, Fylan B. Making it work for me: beliefs about making a personal health record relevant and useable. BMC Health Serv Res 2018 Jun 14;18(1):445 [FREE Full text] [doi: 10.1186/s12913-018-3254-z] [Medline: 29898730]
- 126. Greenberg AJ, Falisi AL, Finney Rutten LJ, Chou WS, Patel V, Moser RP, et al. Access to electronic personal health records among patients with multiple chronic conditions: a secondary data analysis. J Med Internet Res 2017 Jun 02;19(6):e188 [FREE Full text] [doi: 10.2196/jmir.7417] [Medline: 28576755]
- 127. Stewart M, Brown JB, Donner A, McWhinney IR, Oates J, Weston WW, et al. The impact of patient-centered care on outcomes. J Fam Pract 2000 Sep;49(9):796-804. [Medline: <u>11032203</u>]
- 128. Antonio MG, Petrovskaya O, Lau F. The state of evidence in patient portals: umbrella review. J Med Internet Res 2020 Nov 11;22(11):e23851 [FREE Full text] [doi: 10.2196/23851] [Medline: 33174851]

Abbreviations

ED: emergency department JBI: Joanna Briggs Institute PHR: personal health record PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses PROSPERO: International Prospective Register of Systematic Reviews RCT: randomized controlled trial

Edited by A Mavragani; submitted 30.09.22; peer-reviewed by M Prietula, M Kapsetaki, F Lau, D Kalra; comments to author 24.10.22; revised version received 14.11.22; accepted 15.11.22; published 22.12.22

<u>Please cite as:</u> Brands MR, Gouw SC, Beestrum M, Cronin RM, Fijnvandraat K, Badawy SM Patient-Centered Digital Health Records and Their Effects on Health Outcomes: Systematic Review J Med Internet Res 2022;24(12):e43086 URL: <u>https://www.jmir.org/2022/12/e43086</u> doi: <u>10.2196/43086</u> PMID:

©Martijn R Brands, Samantha C Gouw, Molly Beestrum, Robert M Cronin, Karin Fijnvandraat, Sherif M Badawy. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 22.12.2022. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

