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A Generative and Causal Pharmacokinetic 
Model for Factor VIII in Hemophilia A: A 
Machine Learning Framework for Continuous 
Model Refinement
Alexander Janssen1,* , Louk Smalbil2, Frank C. Bennis3,4 , Marjon H. Cnossen5 , Ron A. A. Mathôt1,*  
and for the OPTI-CLOT study group and SYMPHONY consortium

In rare diseases, such as hemophilia A, the development of accurate population pharmacokinetic (PK) models is 
often hindered by the limited availability of data. Most PK models are specific to a single recombinant factor VIII 
(rFVIII) concentrate or measurement assay, and are generally unsuited for answering counterfactual (“what-if”) 
queries. Ideally, data from multiple hemophilia treatment centers are combined but this is generally difficult as 
patient data are kept private. In this work, we utilize causal inference techniques to produce a hybrid machine 
learning (ML) PK model that corrects for differences between rFVIII concentrates and measurement assays. Next, 
we augment this model with a generative model that can simulate realistic virtual patients as well as impute 
missing data. This model can be shared instead of actual patient data, resolving privacy issues. The hybrid 
ML-PK model was trained on chromogenic assay data of lonoctocog alfa and predictive performance was then 
evaluated on an external data set of patients who received octocog alfa with FVIII levels measured using the 
one-stage assay. The model presented higher accuracy compared with three previous PK models developed on 
data similar to the external data set (root mean squared error = 14.6 IU/dL vs. mean of 17.7 IU/dL). Finally, we 
show that the generative model can be used to accurately impute missing data (< 18% error). In conclusion, the 
proposed approach introduces interesting new possibilities for model development. In the context of rare disease, 
the introduction of generative models facilitates sharing of synthetic data, enabling the iterative improvement of 
population PK models.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
	; Population pharmacokinetic (PK) models are a use-

ful tool to personalize treatment. In hemophilia A, there 
are many models to describe the PK of different factor 
VIII (FVIII) concentrates. Ideally, there exists a unified 
PK model that offers accurate predictions for all FVIII 
concentrates.
WHAT QUESTION DID THIS STUDY ADDRESS?
	; Can we combine generative modeling and techniques from 

causal inference to create a hybrid machine-learning (ML)-PK 
model that can accurately predict the PK of drug B when it was 
trained on drug A?

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
	; The ML-PK model more accurately predicts concentra-

tions of drug B compared with models specifically trained on 
such data. This might be attributable to the implementation of 
causal covariates. The generative model can accurately impute 
missing data.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
	; The proposed ML-PK model is interpretable and training is 

simple. By sharing generative models, a synthetic copy of otherwise 
sensitive data can still be made available. The framework enables 
the continuous refinement of population PK models on new data.
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Hemophilia A is an X-linked recessive bleeding disorder caused 
by a deficiency or dysfunction of the blood clotting factor VIII 
(FVIII). Severe hemophilia A (endogenous FVIII activity 
level < 1% or < 1 IU/dL) are at increased risk of prolonged bleed-
ing, significant morbidity, and reduced quality of life. Personalized 
prophylaxis involving the administration of exogenous FVIII is 
the cornerstone of hemophilia A treatment. The pharmacokinetic 
(PK) properties of FVIII play a crucial role in the determination 
of the optimal dosing regimen for the prevention of spontaneous 
bleeding. However, the significant interindividual variability in 
the PK of FVIII makes accurately predicting FVIII concentration-
time profiles challenging.1,2

Population PK modeling has emerged as a valuable tool for 
characterizing the PK of drugs in heterogeneous patient popu-
lations. Several of such models have already been developed for 
the wide range of recombinant FVIII (rFVIII) concentrates cur-
rently used in clinical practice.3 However, most have been de-
veloped for a specific brand of rFVIII concentrate on relatively 
small patient populations. This might pose problems, as differ-
ences in covariate implementations, potential biases in small 
or single center data sets, varying PK for different rFVIII for-
mulations, or the FVIII assay type/reagents can all potentially 
affect model accuracy. External validation studies have indeed 
shown that model parameters frequently need to be adjusted 
when attempting predictions on new data.3–6 Ideally, popula-
tion PK models correct for these sources of variability, but this 
requires larger scale data sets rarely available in part due to data 
confidentiality.

In order to adjust for variability between subpopulations, it 
can be useful to consider causal inference techniques during 
model development. Explicit use of these techniques has been 
lacking from the pharmacometrics literature,7 although model 
components are informally judged based on biological plausi-
bility. In addition, counterfactual analysis is used extensively in 
practice, for example, when simulating individual drug exposure 
following alternative (i.e., “unseen”) dosing schedules. However, 
more complex queries, such as “what if the patient received a 
different drug,” are not necessarily supported by most models. 
To answer such questions, population PK models should ideally 

incorporate notions of causality. As an example, von Willebrand 
factor (VWF) levels are well known to be an important determi-
nant of FVIII clearance, but are rarely included as a covariate.3 
One prominent reason is that VWF levels are seldom measured, 
and thus frequently unavailable during model development. 
Alternatively, covariates such as patient age or blood group – 
which are correlated to VWF – are included. It is, however, likely 
that these variables have no independent causal effect, but rather 
that their effects are mediated through VWF.2,8,9 As a result, in-
terventions affecting VWF levels, such as hemostatic challenges 
sustained during surgery, are not described by the model, result-
ing in incorrect predictions.10,11

An important component of causal inference involves detail-
ing variable dependencies in a directed acyclic graph (DAG). In 
a DAG, nodes (variables) are connected via edges, which describe 
the presence and direction of causal relationships:

Here, variable X affects variable Z which in turn affects Y. This is 
analogous to our previous example of age or blood group (X) being 
related to VWF levels (Z) which has a causal effect on FVIII clear-
ance (Y). When we only implement the effect of X on Y, any effects 
on Z are not represented by the model. The DAG facilitates the 
identification of problematic variables and confounders affecting 
the predictions.

A DAG incorporates known information about causal ef-
fects with domain-specific assumptions to describe the data-
generating process. Expanding on this view, we can create 
models that reproduce the observed data based on the relation-
ships in the graph. By supporting population PK models with 
generative models, it is possible to impute missing data, answer 
counterfactual queries, or generate realistic virtual patients with 
corresponding drug exposures. In addition, it is possible to share 
generative models instead of real patient data, avoiding issues 
with data privacy. Similarly, we can combine multiple PK mod-
els into a model ensemble and weight the predictions for any 
new patients by their similarity to virtual ones from correspond-
ing generative models. This would offer an interesting new 

(1)X → Z → Y

Figure 1  Directed acyclic graphs describing covariate relationships. Observed variables are denoted by circles, variables not in a circle 
indicate unmeasured or latent variables. Partially filled nodes indicate partially observed variables. Edges without an arrow represent 
relationship with unknown direction. DAGs were separated per model to facilitate presentation of the graph. a, age; b, blood group; C, co-
morbidities; c, treatment center; CL, clearance; D, diet; DAGs, directed acyclic graphs; Gh, genetic factors related to height; Gv, genetic factors 
related to VWF; h, height; I, product-specific inhibitor; L, lifestyle; M, co-medication; p, rFVIII concentrate; r, assay reagent; S, stress; t, assay 
type; U, latent variable; Uv, unknown factors related to VWF; v, VWF; w, weight; y, observation; ε, residual variance; η, random effect estimate 
representing unobserved effects; VWF, von Willebrand factor.
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approach to the development of population PK models and is 
especially relevant in the context of rare diseases.

The contributions of the current work are three-fold: (1) to 
learn the causal graph describing the sources of variability rel-
evant for treatment using rFVIII concentrates, (2) to develop 
a generative model based on this graph, and (3) to perform a 
first step in the development of a PK model that accurately pre-
dicts FVIII levels in counterfactual scenarios. Novel machine-
learning (ML) algorithms are used to simplify the process of 
model development and to facilitate others to train the model 
on new patient populations. Additionally, we use interpretable 
algorithms to promote causal interpretation and evaluation of 
the model. This work describes an initial use case for hemophilia 
A, but the proposed framework of combining causal inference, 
generative models, and ML-based population PK modeling can 
of course be applied to other problems.

METHODS
Causal graph
Causal relationships between all relevant variables were described using 
a DAG and was informed based on previous literature on the PK of 
FVIII and consultations with (pediatric) hematologists (see Figure 1). 
Correctness of the proposed DAG was evaluated by fitting models for 
alternative hypotheses and comparing model performance. In the gen-
erative model, VWF levels were affected by multiple factors, including 
patient blood group and age (the latter mediated through the presence 
of comorbidities). It was assumed that these factors had no independent 
causal effect on FVIII PK. To test this assumption, an alternative model 
was fit with age and blood group as covariates (removing VWF) and com-
pared with a model where age and blood group were added after learning 
the effect of VWF.

Next, the effect of patient weight and/or height on FVIII clearance 
(CL) and volume of distribution (V1) acts through unobserved factors 
U, which could, for example, represent plasma volume. We hypothesized 
that the variability in this latent factor is more closely correlated to fat-free 
mass (FFM), and thus compared models using an estimate of FFM12 to 
those with weight and/or height as covariates.

We assumed that the variability of intercompartmental clearance 
(Q) and peripheral volume of distribution (V2) was relatively low such 
that covariates were less important for these parameters. However, the 
specific rFVIII concentrate administered was chosen to affect all PK 
parameters, of which the effects are likely attributable to differences in 
molecular structure. Models were also fit including the effect of FFM 
on Q and V2.

Finally, the type of assay (one-stage or chromogenic), the assay reagents 
used, and specific rFVIII concentrates were identified to affect FVIII mea-
surements in the assay model. As an example of the latter effect, lonocto-
cog alfa levels are known to be underestimated by roughly twofold when 
using the one-stage assay.13 We first fit an assay conversion for octocog alfa 
chromogenic levels to one-stage levels using an exponential model, and 
then estimated an additional proportional effect for lonoctocog alfa.

Population PK model
A population PK model was constructed using deep compartment 
models (DCMs), a hybrid ML/PK technique that learns covariate ef-
fects directly from data.14 A specific neural network architecture was 
used such that model output was interpretable. Additionally, a deep 
ensemble was fit in order to approximate model uncertainty with re-
spect to the learned effects.15 After fitting the fixed effects model, ran-
dom effects model parameters for Bayesian forecasting were estimated 
by optimizing the first-order conditional estimation method with in-
teraction (FOCEI) objective function.16 More information on model 

architecture and training approach is outlined in Supplementary 
Material S1 section 1.

The model was fit on data from two clinical trials evaluating the effec-
tiveness of lonoctocog alfa (Afstyla) during prophylactic treatment, kindly 
provided by CSL Behring GmbH. The data set included information on 
the country of residence, age, body weight, height, and VWF:Ag levels of 
103 patients with severe hemophilia A followed over a combined total of 
133 visits. Dense PK profiles (median of 12 FVIII measurements per visit) 
were collected for each of the individuals. A two-compartment model 
was used and random effects were estimated for the CL and V1 param-
eters. Combined additive and proportional residual error were assumed. 
Covariates were selected based on direct causal relationships in the DAG, 
avoiding confounders.

A subset of the patients also received octocog alfa (Advate, n = 27). 
This enabled us to learn a conversion from lonoctocog alfa PK param-
eters to octocog alfa parameters. It was assumed that any disparities in 
PK followed from differences in the specific concentrate administered, 
rather than the effect of the covariates. First, individual estimates of 
the PK parameters were obtained based on the lonoctocog alfa data. A 
Bayesian model was then used to obtain posterior distributions over the 
proportional change in these parameters when predicting octocog alfa 
levels.

Finally, because both the one-stage and chromogenic assay were used to 
measure FVIII levels, an assay conversion model could be developed for 
both lonoctocog alfa and octocog alfa. An exponential model was used to 
transform chromogenic assay measurements to corresponding one-stage 
assay measurements.

Generative models
We make the distinction between two different types of generative mod-
els: those with a covariate-focus and those with a data set focus. The for-
mer attempts to describe covariate relationships shared between data sets 
and is suited for data imputation and for estimating downstream effects 
of “do expressions” (e.g., estimating the increase in height and weight of 
a child aging 2 years) following from the causal graph. In contrast, gener-
ative models with a data set focus aim to produce virtual patients similar 
to the real patients. These models do not necessarily rely on a DAG are 
not suited for data imputation.

Covariate-focus generative model
Public data sets were collected in order to describe the relationships be-
tween each of the covariates. Information on the relationship between 
body weight, height, and age was obtained for 1,635 men from the 
National Health and Nutrition Examination Survey (NHANES) data 
set.17 Publicly available data on VWF:Ag were extracted from several 
publications using WebPlotDigitizer (Rohatgi A., version 4.6).8,18 A 
total of 870 VWF:Ag levels with corresponding patient age and blood 
group were available. Depending on the complexity of the relationships, 
different probabilistic ML models were fit based on the DAG to learn 
each of the conditional distributions. Heteroscedastic noise was assumed 
in all models. More details can be found in Supplementary Material S1 
section 2.

Data set specific generative model
A generative model was developed for the data from the lonoctocog alfa 
data set. To this end, neural spline models were fit to learn the joint dis-
tribution over patient age, weight, height, and VWF levels. A large, cu-
rated data set of virtual patients is shared alongside model code.

Model evaluation
Accuracy of the generative model with covariate-focus was evaluated 
using the lonoctocog alfa data in two scenarios: (1) data on VWF lev-
els were missing and (2) only data on patient age was available. The first 
scenario represents data frequently unavailable in the clinical setting, 
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whereas scenario two reflects an extreme setting where none of the co-
variates used in the PK model are available. Two approaches for data gen-
eration were compared. In the first approach, data were generated a priori 
based on the median of the prior distributions. Because data on blood 
group was unavailable in the lonoctocog alfa data set, predictions were 
compared assuming that all patients either had blood group O or non-O. 
In the second approach, a Bayesian model was implemented to produce 
posterior distributions of the missing covariates and random effect pa-
rameters based on observed FVIII levels. Here, the prior distribution for 
VWF:Ag was implemented as a mixture distribution indexed by blood 
group. As a result, the model also obtains a posterior probability of the 
patient having blood group O. Again, posterior median was collected. 
Accuracy of the generated covariates was evaluated using the mean abso-
lute percentage error (MAPE).

Performance of the predictive model was validated on an external dataset 
of FVIII PK profiles collected for patients with moderate and severe hemo-
philia A (n = 40) during the OPTI-CLOT clinical trial.19 Only data from 
patients who received octocog alfa and turoctocog alfa (NovoEight; similar 
PK as octocog alfa20) were used. The data set contained information on 
patient age, weight, height, blood group, and VWF:Ag levels. VWF levels 
were available for 16 patients. Missing values were imputed using the gener-
ative model using the a priori approach. A median of 3 FVIII measurements 
were available per patient, collected roughly 4, 24, and 48 hours after dose. 
The one-stage assay was used to measure FVIII levels. Predictions from the 
PK model were thus converted from chromogenic to one-stage levels using 
the assay conversion model. Model performance was compared with four 
representative PK models trained on one-stage assay data of octocog alfa, 
with two models also trained on other concentrates.1,21–23 Predictive per-
formance was represented by the root mean squared error (RMSE), mean 
error (ME), and coefficient of determination (R2).

Model code
Models were implemented in the Julia programming language (version 
1.8.3) with the DifferentialEquations.jl package as a main dependency.24 
All relevant model code (including generative models) is available at 
https://github.com/Janssena/DeepFVIII.jl.

RESULTS
An overview of the patient characteristics for the lonoctocog alfa 
data set and the OPTI-CLOT data set are shown in Table 1. 
Importantly, data on VWF levels were missing for more than half 
of patients (24/40) in the test data set.

A deep ensemble of DCMs was fit to predict lonoctocog alfa lev-
els measured using the chromogenic assay. The final model included 
the effect of FFM on CL and V1 and the effect of VWF on CL. The 
DAG is shown in Figure 1. The validation set RMSE of median 
typical predictions from the deep ensemble was 11.0 ± 1.1 IU/
dL. Coefficient of variation of random effects on CL and V1 were 
23% and 18%, respectively (CV (%) =

√

exp(�2) - 1 × 100). 
Estimated standard deviation of additive error was 1.3 IU/dL and 
the estimate of proportional error was 8.4%.

Learned functions could be visualized and matched expec-
tations about the causal effect of the covariates (see Figure 2). 
Investigations on alternative hypotheses supported the proposed 
final model (see Table S1).

Next, the conversion model was created to adjust individual 
lonoctocog alfa PK parameters to octocog alfa PK parameters. 
Estimated CL of octocog alfa was increased by 15% (95% cred-
ible interval  (CrI): 13–17), V1 was decreased by 19% (95% CrI: 
16–23), Q was decreased by 74% (95% CrI: 49–83), and V2 was 
223% higher (95% CrI: 193–253). The learned correction factors 
led to very accurate predictions using the random effect estimates 
for rFVIII-SingleChain in all but one patient (see Figure S9). The 
conversion of chromogenic assay levels to one-stage assay levels was 
represented by the following equation:

(2)osa=max

(

0,
−3.07+4.76 ⋅csa0.66

2.10Lonoctocog alfa

)

Table 1  Patient characteristics

Training data Test data

Lonoctocog alfa Octocog alfa Overall Octocog alfa Turoctocog alfa

n 103 27 40 19 21

Age in years median 
[range]

26 [1–60] 32 [19–60] 49 [18–77] 48 [18–77] 49 [21–77]

Height in cm median 
[range]

172 [84–194] 178 [163–190] 182 [148–198] 183 [143–195] 179 [170–198]

Weight in kg median 
[range]

68 [12–112] 77 [59–100] 89 [61–134] 88 [61–133] 95 [63–134]

BMI median [range] 21 [13–37] 25 [19–30] 27 [19–43] 27 [19–36] 27 [21–43]

Fat-free mass in kg 
median [range]

55 [9.6–75] 59 [50–72] 66 [44–85] 66 [44–85] 67 [52–78]

Blood group O missing missing 63% 53% 71%

VWF:Ag median 
[range]
(% missing)

114 [42.7–296] 
(0%)

125 [73–242] 
(0%)

115 [73–225] 
(60%)

141 [108–222] 
(63%)

106 [73–225] 
(57%)

Number of FVIII meas-
urements (median)

1,465 (12) 292 (11) 125 (3) 57 (3) 68 (3)

Assay One-stage + chromogenic One-stage

Reagent Pathromtin SL + Coamatic test kit Treatment center specific (unspecified)

BMI, body mass index; FVIII, factor VIII; VWF:Ag, von Willebrand factor antigen.
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After applying the PK and the assay conversion, test error on the exter-
nal data set was slightly higher compared with accuracy on the train set 
(RMSE = 14.6 IU/dL, R2 = 0.90). The RMSE of typical predictions 
from our model was lower compared with three of the previously pub-
lished models1,21,22 (mean RMSE = 17.7 IU/dL; see Table 2), whose 

predictions also presented a slightly higher degree of bias (ME of 3.81 
vs. 1.50 IU/dL). The most accurate alternative23 depicts similar per-
formance to our model (RMSE = 15.4 IU/dL, R2 = 0.89).

Finally, the accuracy of the generative model was evaluated 
in the two missing data scenarios (see Table 3). The Bayesian 

Figure 2  Visualizations of learned covariate effects. Each line depicts the median effect over the predictions from the deep ensemble, along 
with its 90% CI. Histograms represent the distribution of the observed covariates. In the bottom right, the median and its 95% credible interval 
from the posterior distributions of the difference in PK parameters between lonoctocog alfa and rFVIII are shown. The shaded area covers a 
<20% change in the PK parameter value. CI, confidence interval; PK, pharmacokinetic; rFVIII, recombinant factor VIII; VWF, von Willebrand factor.

Table 2  Accuracy of population PK models

Model Training data
RMSE of typical 

predictions (IU/dL)
ME of typical 

predictions (IU/dL) R2

Bjorkman et al.1 Octocog alfa and plasma-derived FVIII 16.6 3.85 0.87

Nesterov et al.16,21 Octocog alfa 17.6 3.82 0.85

McEneny-King et al.22 Octocog alfa and other SHL 19.0 3.76 0.86

Allard et al.23 Octocog alfa and other SHL 15.4 1.13 0.89

Causal DCM (ours) Lonoctocog alfa 14.6 1.50 0.90

DCM, deep compartment model; FVIII, factor VIII; ME, mean error; PK, pharmacokinetic; R2, coefficient of determination; RMSE, root mean squared error; SHL, 
standard half-life.
Root mean squared error, mean error, and coefficient of determination for each of the models on the test set are shown.
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approach outperformed the a priori approach in terms of MAPE 
in all cases. When using the a priori approach to impute VWF 
levels, MAPE of predictions was 30.0% when assuming all in-
dividuals had blood group non-O and 32.1% when assuming 
blood group O. The MAPE of the median VWF:Ag levels ob-
tained from the Bayesian approach was 17.6%. Overall, imputa-
tion of height was the most accurate (MAPE of 3.9–4.3%), with 
imputation of body weight having relatively high error (MAPE 
of 22.4–25.5%). Interestingly, the MAPE of imputed VWF:Ag 
levels was similar in both missing data scenarios (MAPE of 
17.6% and 17.9%).

DISCUSSION
In this work, we aimed to develop a population PK model that 
follows techniques from causal inference. First, relationships 
of relevant variables and potential confounders were described 
using a DAG. The graph supports the selection of important 
covariates to include in the PK model while offering a natu-
ral way to interpret consequences of interventions on any of 
the variables. Next, a hybrid ML/PK model was fit to predict 
lonoctocog alfa levels measured using the chromogenic assay. 
Because part of the patients in the data set also received octocog 
alfa shortly before their lonoctocog alfa PK profile was taken, 
the model could be extended to correct for the difference in PK 
between these two concentrates. By estimating the difference 
with respect to the individual PK parameters estimates for lo-
noctocog alfa, we simulate the intervention of only changing 
the FVIII concentrate. The resulting predictions for octocog 
alfa were highly accurate based on a proportional change in the 
PK parameters. Only for a single patient were discordant re-
sults observed, potentially as a result of an unseen variable that 
specifically affects the PK of octocog alfa (e.g., rFVIII specific 
inhibitors).

We then determined the generalization capacity of the model by 
comparing the error to predictions from previous PK models on 
data of patients who had received octocog alfa and turoctocog alfa 
measured using the one-stage assay. Predictions from our model 
thus needed to be corrected for differences between FVIII con-
centrates as well as the measurement assay used. Nonetheless, our 
model presented lower RMSE compared with three of the previous 
models (with roughly similar performance to the most accurate al-
ternative), even though an important covariate – VWF:Ag – was 
missing in more than half of the patients. Although it is difficult 

to determine the clinical impact with respect to prediction accu-
racy, it is encouraging that we obtained at worst similar accuracy 
to models specifically trained on data of a different rFVIII concen-
trate and measurement assay.

To support the model in settings involving missing data, we 
augmented the model with a generative model which reproduces 
the data based on the DAG. Evaluations of this model depicted 
good imputation performance, with < 18% error when imput-
ing VWF:Ag levels in the lonoctocog alfa data set. This model 
even provided accurate (< 18% error) predictions of PK model 
covariates in a very limited setting when only patient age was 
known.

The above results indicate the benefit of viewing PK model 
development through a causal lens. The main applied tool of 
causal inference involved using a DAG to describe the rela-
tionships of relevant variables. In the graph, we assumed that 
any causal effect of age and blood group are largely mediated 
through VWF levels. Our results show that these covariates were 
largely uncorrelated to the PK parameters when VWF:Ag was 
already included in the model (see Figure S6). It has already 
been extensively reported that VWF:Ag levels are lower in in-
dividuals with blood group O.9 Similarly, higher age correlates 
with an increase in VWF levels.25 Interestingly, this relationship 
disappeared when correcting for the presence of specific comor-
bidities, which we included in the DAG.26 We explicitly specify 
that VWF levels are partially observed, as these levels can vary 
over time related to factors such as stress. Relatively recent VWF 
levels might thus be necessary to correctly estimate the causal 
effect of interventions in the graph. The same applies to the in-
dividual estimates of the random effects.

In the PK model, we used an estimate of FFM to affect FVIII 
CL and V1 rather than body weight. Although the use of body 
weight depicted similar predictive performance, the uncertainty 
of the learned functions was higher. Additionally, the functions 
seemed to indicate the model implicitly learning a measure of 
lean body mass as the function flattened at higher body weight 
(see Figure S7). These findings support the observation that 
body weight correlates poorly with the PK of rFVIII at higher 
body mass index (BMI).27 A relevant assumption in the model 
was that Q and V2 were not affected by any covariates. It is com-
mon in PK models to implement allometric scaling of these pa-
rameters. In our analysis, we did not find that adding the effect 
of FFM on Q and V2 improved model accuracy. Additionally, 

Table 3  Accuracy of the generative model

Scenario Approach

MAPE (%) ± SD

VWF:Ag (assumed BG)Height Weight FFM

VWF:Ag (and blood group) missing a priori – – – 30.0 ± 25 (non-O) 32.1 ± 19 (O)

Bayesian – – – 17.6 ± 14

All PK model covariates missing a priori 4.3 ± 3.4 25.5 ± 24 16.8 ± 16 30.0 ± 25 (non-O) 32.1 ± 19 (O)

Bayesian 3.9 ± 3.1 22.4 ± 22 14.7 ± 14 17.9 ± 15

BG, blood group; FFM, fat-free mass; MAPE, mean absolute percentage error; PK, pharmacokinetic; SD, standard deviation; VWF:Ag, von Willebrand factor 
antigen.
The average mean absolute percentage error between the true and generated covariate values along with its standard deviation is shown. Bold text indicates the 
most accurate model in each of the two scenarios.
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uncertainty in the learned functions was again large when their 
effects were added, discouraging its inclusion in the model. 
Alternatively, we included the effect of differences between 
rFVIII concentrates on all PK parameters (rather than on a sin-
gle parameter). The model produced accurate predictions for 
turoctocog alfa after correcting for octocog alfa PK, suggesting 
that it might not be necessary to correct for each specific molec-
ular formulation of FVIII.

The final component of the proposed DAG deals with variables 
that affect the measurement of FVIII levels. Corrections for dis-
crepancies between assays are rarely described in detail by FVIII 
population PK models. There do exist models that incorporate 
such corrections,6,28 or that correct for differences in measured 
FVIII levels between treatment centers (potentially related to 
the use of different reagents).29 Although we do describe several 
sources of variability affecting FVIII measurements, we did not 
describe most of their potential effects in the current work due to 
limitations of the available data. Examples of additional sources of 
variability include different assay reagents, or bias arising from in-
compatibilities between specific assays and certain FVIII concen-
trates.30 In order to correct for such biases, it might be necessary to 
develop models on multiple data sets which should be explored in 
future work.

A novel element of the current work is the addition of a genera-
tive model to support population PK models. Differences in covari-
ate availability can complicate the implementation of PK models in 
clinical practice. Generative models can be used to impute missing 
values or to simulate realistic patients. Additionally, these models 
can be used to learn the joint distribution over the covariates with 
respect to a specific data set. When encountering new data, these 
joint distributions can be used to identify out-of-distribution sam-
ples for which the model might not be appropriate. Additionally, 
it allows models to continue training on new data, where new co-
variate effects are learned in regions where the model does not yet 
have sufficient support. Such an approach is an essential compo-
nent of the Bayesian paradigm, where model priors are used in se-
quential studies to iteratively update the posterior. PK models can 
be trained locally, whereas model parameters can be shared, keep-
ing actual patient data private. The use of automatic ML models 
greatly support such an approach, whereas the use of interpretable 
models proposed in the current work enable the identification of 
model bias and errors. Concrete examples of additional use cases of 
our approach include the sharing of synthetic data with outcomes 
to pool information on risk profiles for different mutations in rare 
cancers, or to continuously refine a PK model for vancomycin on 
specific patient populations,31 utilizing information from previous 
studies.

There were also some limitations of the current study. The pro-
posed PK model was mainly trained on a population of adult pa-
tients, and thus might not be appropriate for pediatric patients. 
Next, the models (including the previous population PK models) 
depicted an underestimation of octocog alfa peak levels in the 
OPTI-CLOT data set. This effect was not seen when making pre-
dictions for the subset of patients who received octocog alfa in the 
training data set. It is possible that differences between the used 
assay or patient population (e.g., higher BMI in the OPTI-CLOT 

data set) influenced the results. It is important that generative mod-
els are developed on large, representative data sets to reduce model 
bias when imputing missing values. The availability of sufficiently 
large data sets can be an issue, also for the development of data set 
specific generative models. Next, although not necessarily speci-
fied in the DAG, we chose to represent the effect of VWF levels 
using VWF:Ag, because public data on VWF:act levels was scarce. 
It is unknown whether the relative amount of VWF or its FVIII 
binding activity is more relevant for FVIII clearance. A combina-
tion of both quantities might be a more accurate representation of 
the effect of VWF. Finally, description of a comprehensive causal 
DAG might be complicated for some drugs, potentially making 
the proposed approach difficult to implement. In some cases, the 
DAG might contain several variables that are either rarely mea-
sured or difficult to determine even in an experimental setting. 
Although there might then not seem to be much benefit to the 
creation of a DAG, it can nonetheless be of use to identify con-
founders or to quantify a degree of uncertainty in the downstream 
effect prediction when data are scarce.

In conclusion, we present a hybrid ML/PK model utilizing 
causal inference techniques to predict FVIII levels in patients with 
hemophilia A. The model accurately extrapolated to a different 
FVIII concentrate and measurement assay in an external data set. 
By using probabilistic models to learn the data generating process, 
the proposed approach can also be used to generate missing data 
and simulate realistic virtual patients. Additionally, by sharing 
these generative models, information on otherwise sensitive data 
can still be made publicly available. The approach introduces an 
interesting new paradigm for the continuous refinement of popu-
lation PK models.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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