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1
G E N E R A L I N T R O D U C T I O N A N D T H E S I S O U T L I N E

1.1 haemophilia a

1.1.1 Background

Bleeding disorders are rare conditions that are caused by a deficiency
or qualitative defect of platelets or coagulation factors. These dis-
orders involve a disruption in the process of coagulation, known
as haemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasishaemostasis, and can be differentiated into primary or secondary Haemostasis

involves the process
of forming a clot at
the site of blood
vessel damage to
stop bleeding.

haemostatic disorders, fibrinolytic disorders, and bleeding disorders
of unknown cause (where the precise aetiology has not (yet) been de-
ciphered). The most well-known bleeding disorders are haemophilia
A (deficiency of factor VIII; FVIII), haemophilia B (deficiency in factor
IX; FIX), and von Willebrand disease (deficiency of von Willebrand
factor; VWF). Amongst these three, von Willebrand disease is the
most common with a prevalence rate of 1 per 100-1,000 individuals,
compared to roughly 13 and 3 per 100,000 males for haemophilia A
and B, respectively [1, 2].

Patients with haemophilia A have impaired haemostasis, result-
ing in an elevated risk of (spontaneous) bleeding. Haemophilia A is
X-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linkedX-linked, meaning that it almost exclusively affects males. The severity Women have two

copies of the X
chromosome.
Although a
deficiency in both
F8 genes is unlikely,
haemophilia carriers
can still present
with low FVIII
levels and elevated
bleeding risk.

of the disorder is characterised in terms of the residual endogenous
factor activity level, which is measured in international units (IU)
using one stage and chromogenic clotting assays. Patients with mild
haemophilia A have endogenous FVIII activity levels of around 5-40

IU/dL, moderate patients have levels between 1-5 IU/dL, and patients
with less than 1 IU/dL are classified as having severe haemophi-
lia A. Without adequate treatment, haemophilia A patients present
with frequent (spontaneous) bleeding typically in joints and muscles
leading to arthropathy, and have an elevated risk of life threatening
bleeding events such as gastrointestinal and intracranial bleeding.
In general, most moderate and mild haemophilia A patients have a
milder bleeding phenotype with bleeding usually occurring following
(minor) trauma or dental and other medical procedures.

In this thesis, we focus mainly on data collected from severe and
moderate haemophilia A patients with a more severe bleeding phe-
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2 general introduction and thesis outline

notype who require regular treatment in daily life or around medical
procedures.

1.1.2 Evolving treatment of haemophilia A

For decades, replacement therapy with FVIII concentrates has been
the cornerstone of the treatment of haemophilia A (see figure 1.1).
Before the 1970s, excessive bleeding could only be treated using whole
blood, plasma or cryoprecipitate infusions, which contain only small
amounts of coagulation factor [3]. Shortages of blood products meant
that most patients were left untreated, resulting in severe blood loss
which was often lethal. Management of haemophilia improved in
the 1970s, when lyophilized plasma concentrates with a higher con-
centration of FVIII became more widely available. Unfortunately, the
widespread adoption of plasma-derived factor concentrates and lack
of appropriate viral screening procedures also resulted in a high rate
of infections with blood-borne viruses, such as hepatitis C and human
immunodeficiency virus (HIV). By the early 1980s, the majority of
haemophilia patients were infected with HIV in western countries
[4]. Although viral inactivation techniques and screening procedures
in later years greatly improved the safety of these plasma-derived
concentrates, recombinant FVIII (rFVIII) concentrates introduced in
the 1990s greatly improved the standard of care for haemophilia A pa-
tients. Home-based treatment became possible and patients saw great
improvements in quality of life. To this day, rFVIII concentrates remain
one of the main pillars of haemophilia A treatment. Recent advances
have mainly focused on the development of specifically modified
rFVIII molecules such as extended half-life (EHL) or VWF-decoupled
concentrates (BIVV001) as well as non-factor replacement therapy op-
tions such as emicizumab [5]. Most of these treatment options promise
longer drug half-lives, improving drug efficacy while reducing in-
jection frequency and easing patient burden. Novel drugs such as
emicizumab can also be administered subcutaneously, reducing the
pain associated with injections.

1.1.3 Prophylaxis
Prophylactic

treatment involves
medical measures

taken to prevent
disease.

In the 1960s, after positive experiences in Sweden and the Netherlands
showing significant reductions in bleeding rates [6, 7], most resource-
rich countries adopted prophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxisprophylaxis as the standard treatment approach
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Figure 1.1: Timeline of important events related to the treatment of
haemophilia A.

for haemophilia A patients with a severe bleeding phenotype. Early
prophylactic treatment was based on the observation that patients
with severe haemophilia could be converted to milder variants by
keeping FVIII levels above 1 IU/dL [8]. To this end, patients on
prophylaxis self-administer FVIII several times per week. Sweden and
the Netherlands diverged in their specific approach to prophylaxis: in
Sweden, high dose (25-40 IU/kg) and high frequency administration
of FVIII (three times weekly) at very early age was recommended
[8]. In contrast, Dutch physicians focused on the more individually
oriented intermediate approach, where prophylaxis was started after
the occurrence of the first bleed and where dosage and frequency
were iteratively increased in response to breakthrough bleeding [9].
Comparisons of both approaches depicted only minor differences in
bleeding rates and, perhaps more relevant, markedly reduced rFVIII
consumption in intermediate prophylaxis regimens (average costs
of prophylaxis are roughly €200,000/year per patient) [9–11]. In the
present-day, most physicians in resource-rich countries strive for zero
bleeds and opt for high-dose prophylaxis. However, the high costs of
rFVIII concentrates and prospects of life-long treatment complicates
more widespread adoption in resource-limited countries. Focus has
thus been placed on a more efficient use of factor concentrates, for
example by adapting target FVIII trough levels on an individual basis.
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1.1.4 Role of pharmacokinetics in personalisation of prophylaxis

As the half-life of many rFVIII concentrates is relatively short (around
12 hours), maintaining trough levels >1 IU/dL requires relatively
high dosage and frequent administration [12]. Unfortunately, the
introduction of EHL concentrates (featuring a roughly 1.5-fold increase
in half-life) have generally not allowed for a significant reduction in
infusion frequency, but do result in higher trough levels [13]. The
personalisation of prophylaxis is complicated by the significant inter-
individual variability in FVIII exposure when patients are given the
same dose per kilogram of body weight [14]. This has prompted
the introduction of methods from the field of pharmacometrics to
quantify pharmacological differences between patients. Population
pharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokineticpharmacokinetic (PK) analysis can be applied to individualise drugPharmacokinetics

describes the
processes of drug

absorption,
distribution,

metabolism, and
elimination.

dosage based on mathematical models [15, 16]. Patients first receive a
test dose of a rFVIII concentrate followed by the collection of multiple
plasma samples in order to determine individual estimates of so-called
PK parameters (e.g. drug clearance and volume of distribution). These
parameters can be used to simulate FVIII exposure in response to
different prophylaxis schedules on an individualised basis. This way,
one can select the optimal treatment regime that achieves pre-specified
target levels with acceptable degree of patient burden and rFVIII
consumption. Multiple clinical guidelines have since recommended
the use of PK-guided dosing for the optimisation of prophylactic
treatment regimens [17–19].

1.1.5 Population pharmacokinetics

Several population PK models, most even specific to certain rFVIII
concentrates, have since been developed to optimise treatment of
haemophilia A patients. Population PK models offer a mathemati-
cal representation of the processes of drug absorption, distribution,
metabolism, and elimination based on (semi-)mechanistic models (see
figure 1.2). Non-linear mixed effect (NLME) modelling is the dom-
inant statistical method for developing population PK models. In
mixed effects models, variability between subjects is divided into fixed
and random effects. Fixed effects describe the relationship between
covariates (e.g. basic patient characteristics such as body weight or
age) and the PK parameters using explicit mathematical equations.
Random effects describe the remaining inter-individual variability in
the parameters, and are used to correct model predictions based on
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the measurements. The random effect can for example be thought of
as correcting for the effect of unobserved covariates. Finally, NLME
models describe the residual error which could for example arise as a
consequence of measurement errors, data collection (e.g. inaccurate
reporting of dose administration or measurement times), and model
misspecification. The resulting population PK models provide prior
information regarding the expected FVIII response of typical patients
(dashed line in figure 1.2). Accurate individual PK parameters can
then be obtained using maximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriorimaximum a posteriori (MAP) estimation based Maximum a

posteriori
estimation finds the
most probable
parameters given
the data.

on a limited number of plasma samples (solid line in figure 1.2). Three
samples collected at 0.5-4, 24, and 48 hours after dose generally are
sufficient for standard half-life (SHL) concentrates, significantly re-
ducing patient burden compared to previous rich sampling schemes
required during classical PK analyses (5-11 samples) [12, 17, 20, 21].

Population pharmacokinetics

Drug

Transit Central

Peripheral

Out

Figure 1.2: Population PK models .

1.1.6 Advances in the treatment of haemophilia A

In the context of haemophilia A, PK-guided dosing often focuses
on maintaining FVIII levels above 1 IU/dL. However, many studies
have demonstrated considerable differences in bleeding outcomes
between patients with similar FVIII exposure [8, 22–25]. Genetic differ-
ences, physical activity levels, and risk-taking behaviour all contribute
to differences in the individual bleeding phenotype [17]. Personal-
isation of treatment should thus ideally also focus on optimising
pharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamicpharmacodynamic (PD) endpoints. Current research focuses on clinical Pharmacodynamics

involves the study
of physiological
effects of drugs on
the body.

markers obtained from the thrombin generation assay (TGA) in order
to estimate the adequacy of haemostasis. The endogenous thrombin
potential (ETP) has been suggested as a promising marker predictive
of bleeding outcomes. A recent study found that all patients with ma-
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jor bleeding had significantly lower ETP levels [26]. However, relevant
variability in bleeding outcomes was still seen at the lower range of
ETP levels [27, 28]. In addition, appropriate targets for TGA-derived
parameters are currently unknown. Further research is thus required
before the method is ready for clinical implementation. Since there is a
strong need for a PD-based method for optimising treatment, research
into alternative methods might be desirable.

As previously mentioned, recent innovations in the treatment of
haemophilia A have led to the development of highly effective and
more patient-friendly non-factor based therapies. One prominent ex-
ample is emicizumab, for which prophylactic treatment once every 1-4
weeks was shown to have high efficacy in various patient populations
during the HAVEN studies [29]. At the moment, factor concentrates
still play a role in prophylaxis and are still widely used for the acute
treatment of breakthrough bleeding or to maintain haemostatic bal-
ance during and after medical procedures. Since these novel therapies
are often more expensive, factor concentrates will also likely remain
mainstay of treatment in resource-limited countries. There is however
no doubt that the various new therapeutic options for haemophilia
will significantly change the clinical landscape in the near future.
Since most patients on emicizumab attain impressive bleeding control,
future approaches to optimise treatment might not be necessary be
focused on improving bleeding outcomes but instead on reducing
costs [30].

Finally, gene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapygene therapy has long been suggested as an option for theGene therapy
involves the

manipulation of
gene expression, for

example by
introducing genetic

material in a
patient’s cells.

potential cure of haemophilia A, especially after FIX gene therapy for
haemophilia B was successfully developed. Gene therapy in haemo-
philia A involves the injection of adeno-associated viruses to transfect
hepatic cells with a functional version of the F8 gene in an attempt to
restore endogenous production of FVIII. In 2022, the first FVIII gene
therapy product, Roctavian©, was granted conditional approval for
haemophilia A patients on prophylaxis in the European Union. Unfor-
tunately, gene therapy cannot be applied in all patients as those with
antibodies against the viral vector are excluded. Moreover, expressed
FVIII levels can be seen to diminish in the years following treatment
[31, 32]. Some patients also still present with breakthrough bleeding
[33]. Repetitive treatment is however complicated by the development
of neutralising antibodies, meaning different viral vectors need to be
used at every iteration of treatment.
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1.2 machine learning

1.2.1 Background

Researchers have long been fascinated with the prospects of con-
structing an artificial intelligence (AI): thinking machines that equal
or surpass human capabilities. Recent developments in the field of
machine learning had many sceptics reconsider their previous dis-
belief in the attainability of that goal. Most notably, the introduction
of ChatGPT 3.0 to the public in November 2022 had many fear a fu-
ture where human workers are replaced by machines. Reality is more
nuanced; machine learning algorithms like ChatGPT appear highly
capable but are frequently found to report incorrect information or
cite non-existing sources (a phenomenon since known as hallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinatinghallucinating) The attribution of

human-like qualities
to AI algorithms is
quite common, but
frequently
considered to be
unjustified.

[34–36]. Nonetheless, the prospects of machine learning in fields like
healthcare are extremely promising. Several machine learning algo-
rithms have already been successfully implemented in clinical practice:
examples include methods that provide discharge decision support,
identify regions-of-interest in magnetic resonance images, or that can
detect atrial fibrillation based on data from wearables [37–39]. Most
approaches utilise highly specialised algorithms designed to improve
performance when working with image (e.g. convolutional methods)
or time-series (e.g. recurrent methods) data.

Deep learning is a sub-field of machine learning focusing on neu-
ral network-based model architectures. Although most specialised
techniques are based on deep learning, classical algorithms such as
tree-based models (decision trees and random forests) can sometimes
still outperform more complex models, especially when working with
relatively small or tabular data sets (e.g. the majority of health record
data is in tabular format) [40, 41]. In general, there is no "best" machine
learning algorithm, and it is likely the case that the performance of
different algorithms is highly dependent on the type of data available.
There has also been a gradual shift away from Big Data to right dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright dataright data. With right data,

quality outweighs
the importance of
sheer volume.

Especially within the context of rare disease, where data is evidently
limited, it is important to collect data of high quality. To success-
fully implement machine learning methods in this context, algorithms
should be able to perform well on smaller data sets, while researchers
should be aware of their different qualities and intricacies. In the
following sections we discuss the algorithms relevant to this thesis.



8 general introduction and thesis outline

1.2.2 Terminology for the uninitiated

Before we start our review of relevant algorithms, it might be useful
for those less versed with terminology from the field of mathematics
and machine learning to offer a short introduction. First, the words
"model", "method", and "algorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithmalgorithm" are used somewhat interchange-We use the term

algorithm to denote
a model architecture

that adheres to
specific

nomenclature.

ably in this thesis. A model offers an abstract representation of ob-
servable phenomena using mathematical concepts. Generally, a model
consists of mathematical equations (i.e. "functions") that have "param-
eters". The simplest model is the linear model: y = ax + b, where
{a, b} are the parameters. Here, y is our quantity of interest and x
is a "covariate", e.g. the predictor that is used to make predictions.
Often, we denote our prediction of y with ŷ (pronounced as "y-hat"),
to indicate that we do not expect it to be exactly the same as the
true observed value (for example due to noise). Machine learning
algorithms have a specific model architecture that is "data-driven"
rather than "hypothesis-driven". One way to think about this is these
algorithms have a generic structure that can learn the relationships
between the covariates and the outcome of interest from the data. The
user thus does not need to specify an explicit model structure.

Whenever we speak of "optimisation" or "learning", the goal is find
the value of the parameters that results in the lowest error of pre-
dictions. This error is represented by the "objective function". This
function can be as simple as the residual error (y− ŷ) or more com-
plicated, for example by using likelihood functions that also take into
account model complexity and prediction uncertainty. Model devel-
opment includes defining model architecture (or several alternatives
based on multiple hypotheses), selection of covariates, parameter op-
timisation based on the objective function, and finally some sort of
model evaluation (for example by comparing learned effects with our
expectation of reality). This last step can be complicated for black-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxblack-boxA black-box refers

to a system that
produces output

based on input, but
whose inner

workings are
opaque.

methods (which most machine learning algorithms are), as it impossi-
ble to infer exactly what such models are doing.

1.2.3 Random forests

Random forests are an extension of the decision tree model (see figure
1.3). A decision tree learns to organise data into bins (e.g. patients with
age < 40 or body weight > 70kg) in a hierarchical manner. At each
level, the model divides the data into two groups based on a cut-off
point in one of the covariates. Increasing the depth of the decision tree
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generally improves predictive performance, but might result in overly
complex trees that generalise poorly (i.e. have low accuracy on new
data).

Decision tree

X1 > a

X2 < b

Optimal Overfit

Figure 1.3: Decision trees.

In a random forest model (figure 1.4), predictions from a large
number of decision trees are averaged in an attempt to improve gen-
eralisability. The training conditions of individual trees are highly
randomised (e.g. by removing a percentage of rows and columns of
the data set at random) to create a diverse model ensemble. Random
forests feature a set of parameters (so-called hyper-parameters) that
can be tuned in order to adjust the learning procedure and to cre-
ate models better suited to the data. Manually choosing appropriate
values for these parameters is difficult, and so cross validation pro-
cedures are often employed to search the hyperparameter space for
the optimal setting. Aside from hyperparameter tuning, performance
of random forest models is difficult to control. Their architecture is
also relatively rigid, hampered by the fact that their learning proce-
dure is non-differentiable. Random forests are thus often replaced by
more specialised algorithms when data sets become more complex
(for example when dealing with images). Tree-based models might
nonetheless still have a role to play for tabular data sets where the data
naturally organises into cohorts with different outcomes. The method
for example has seen some success relative to other algorithms in
classification problems.



10 general introduction and thesis outline

Random forest

X
. . .

1 2 n

Y

. . .

Optimal Overfit

Figure 1.4: Random forests.

to put it simply. . .

Random forest models are made up of many decision trees
(hence the name "forest"). Decision trees are prevalent in the
medical domain as decision support tools, and most physi-
cians will be familiar with them from flow diagrams (e.g. "if
[severe disease] and [blood marker elevated] then [give drug
X]"). Decision trees can be automatically constructed from data
but can quickly become complex, reducing their performance
in practice. Random forests improve performance by fitting
many decision trees, randomising the learning process, and
averaging predictions. They work well on small, tabular data
sets but are challenging to apply to more complex data sets.

1.2.4 Neural networks

Artificial neural networks are a biologically-inspired approach to repli-
cate the neuronal structure present in the human brain. A neural net-
work (see figure 1.5) consists of a hierarchical set of nodes (represent-
ing neurons) that are connected to other nodes via edges (representing
synapses). Each node processes the information received from previ-
ous nodes and passes on the processed signal further downstream.
Models consisting of many such neuronal layers (known as "hidden
layers") are called deep neural networks. Each node in the network per-
forms a linear transformation of the data and passes the result through
a non-linear function (so-called "activation functions"). Based on this
relatively simple architecture, deep neural networks can perform very
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complex tasks. The choice of activation function and depth of the
model affect its capabilities and performance. For example, single
layer neural networks based on the rectified linear unit (ReLu) acti-
vation function are already considered universal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximatorsuniversal function approximators Universal function

approximators can
represent any
continuous
function.

[42]. Deep neural networks with large numbers of neurons (e.g. GPT-3
has 175 billion parameters) can generate text, images, or video [43–45].

Neural network

x

Hidden layers

...
...

y

Optimal Overfit

Figure 1.5: Neural networks.

The success of neural networks can in part be attributed to their
extensibility: highly specialised architectures such as convolutional
layers (scanning groups of pixels in images rather than single pixels),
recurrent networks (tracking a latent state as a form of memory), and
most recently transformers (efficiently learning historical dependen-
cies in data) can be used to adapt models to specific data types [46–48].
These architectures are fully differentiable, meaning that complex com-
binations of structures can be implemented in order to create highly
specialised model. In this thesis, we will focus mainly on the function
approximation capabilities of relatively simple neural networks and
their composability with other methods, such as differential equations.
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to put it simply. . .

The structure of an artificial neural network is meant to mimic
that of the human brain, where signals pass between neurons
while requiring a certain intensity to activate. Although some
of the similarities are lost in practice, neural networks still
perform surprisingly well at various tasks. The reasons are
however not well understood. Generally, combining bigger
models with larger data sets yields more complex behaviour.
Their ability to produce (potentially) useful models without the
need for prior knowledge, combined with their extensibility to
different types of data (e.g. audio or image data) make them
very appealing.

1.2.5 Gaussian Processes

Gaussian Processes (GPs) are an extension of the multivariate normal
distribution to infinite dimensions [49]. To aid the reader in grasping
this concept, we can frame GPs as a collection of Gaussian variables
indexed by time, such that a GP is described by a Gaussian (i.e.
Normal) distribution with an unique mean and variance at each
time point (see figure 1.6). These variables are described by a mean
function and a kernel function. The kernel function describes the
correlation between each variable. When correlation is high, distant
variables (in time) have similar values and when correlation is low the
random variables appear to be more randomly distributed. We can
also think of a GP as representing a distribution over functions, with
the kernel function describing the complexity of the functions. Similar
to neural networks, GPs using specific kernels are universal function
approximators [50]. Similarities do not end there: neural networks
with infinite width (i.e. an infinite number of neurons) featuring
Gaussian distributions over their parameters (also known as Bayesian
neural networks) are equivalent to GPs [51].

GPs are attractive since they offer a probabilistic, data-driven ap-
proach to the modelling of data, providing predictions with uncer-
tainty estimates. The choice of kernel function can be used to add prior
knowledge to model structure, potentially improving performance in
smaller data sets. One downside of GPs is their computational com-
plexity, resulting in poor scaling to larger data sets. Standard GPs are
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Gaussian Process

GP

yi

ti

yi+1
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yi+n
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Optimal Overfit

Figure 1.6: Gaussian Processes.

also not suitable in cases where the data does not follow a Gaussian
distribution (e.g. when modelling categorical data). This has led to
the development of sparse and approximate methods for fitting GPs
[52, 53]. Although much of the machine learning field is dominated
by neural network based models, GP-based algorithms might still be
beneficial in a setting where model extrapolation and uncertainty is
important.

to put it simply. . .

Gaussian Processes are a collection of infinitely many Nor-
mal distributions, each indexed by a variable such as time,
with specific means and variances at each point. Since it is
represented by distributions, its predictions have confidence
intervals which provides a measure of uncertainty. A key as-
pect of learning a Gaussian Process is learning the covariance
between points; high covariance indicates higher similarity,
while low covariance suggests they are more distinct. The re-
sult is a smooth curve, with parameters controlling the curve’s
complexity. Gaussian Processes are a flexible and powerful
tool for modelling data and learning underlying patterns with
quantified uncertainty.

1.2.6 Overfitting

One of the strengths of machine learning algorithms – their ability
to learn from data – also represents one of their most important
caveats. Since these algorithms can learn almost any complex function,
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they are prone to learning spurious effects. Indeed, methods like
neural networks can make highly accurate predictions even when
data or labels are completely randomised [54]. This concept is known
as overfitting, a phenomenon where the model learns to (perfectly)
reproduce the data instead of learning useful relationships between the
variables. When training machine learning algorithms, one of the most
important factors to test is whether the model has learned something
"useful". In practice, one evaluates how well the model generalises
to unseen data. Ideally, machine learning methods are first trained
on one data set, and performance is then evaluated on additional
(external) sets of data. However, this is often not possible as data is
limited, which is especially the case in the context of rare diseases such
as haemophilia A. Alternatively, methods explaining model output
(known as explainable AI) might be useful to judge whether the model
has learned "correct" information. These methods can be used to rank
covariates based on their importance, or to visualise the approximate
relationship with the dependent variable. However, such methods
generally add an additional black-box layer, while interpretation of the
resulting model explanations is not always straightforward. Frequently
however, the available data is simply divided into a train and test set.
The training data is then used to develop the model, while accuracy is
evaluated on the test data. This process is then replicated many times
in order to estimate generalisability of the model. Unfortunately, there
is no single method that can definitively determine whether a model
has overfit to the data, so model evaluation procedures generally
require expertise with respect to the methods used.

1.2.7 Domain-specific challenges in pharmacometrics and rare disease

The adoption of machine learning in the context of pharmacomet-
rics and rare disease holds great potential [55–57]. Examples include
the ability to learn features from medical imaging data, or to find
complex patterns in -omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics-omics data to improve the treatment of disease.The suffix -omics

references the study
of large-scale data of
biological molecules
like genes, proteins,

or metabolites.

Machine learning algorithms might reduce the complexity of model
development as they can be used to learn covariate effects, disease
characteristics, or treatment outcomes. This can also be useful in set-
tings where disease physiology is not yet fully understood, as is often
the case for rare disease. There are however several barriers that com-
plicate the implementation of machine learning in these fields. First,
data is often sparse, both in the number of subjects as in the number
of relevant clinical measurements per subject. Second, measurements
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are often collected at irregular intervals, such that a large fraction of
data is missing per subject. Third, inter-individual variability in drug
exposure and response is often high, meaning that models should
account for some form of prediction uncertainty. Fourth, pharmaco-
metric models are frequently used to perform counterfactual analysis,
for example by simulating how drug exposure is affected by changes
in the dosing schedule. The algorithm should thus reliably extrapo-
late to unseen treatment settings. Finally, a large degree of trust in
model predictions is required in the context of medical decision mak-
ing. Model interpretation and explanation are thus likely important
components of a successful system.
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Figure 1.7: Model architectures that fail to extrapolate to unseen set-
tings.

Typical machine learning algorithms are not necessarily well suited
for tackling these problems. Strikingly, we can easily show that most
standard algorithms (and even specialised architectures such as recur-
rent neural networks) are inadequate. Problems arise as a consequence
of the use of treatment information as input to the model. Since we
can never be certain that the model correctly interprets these inputs,
extrapolation is inherently unreliable. In figure 1.7, we show examples
of different models failing to extrapolate. We depict two generic model
architectures that make incorrect predictions in counterfactual scenar-
ios. In figure 1.7a, we depict models that provide the current time
point or time after dose t and the dose amount d as direct inputs to a
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black box model. Since the model has no explicit causal representation
of the dose, the model attempts to correlate the dose with the observed
drug measurements. We cannot guarantee that the model correctly
interpolates between dose amounts given that is has observed only a
fraction of the possible options. The same problem arises with respect
to the direct use of time t: making predictions far outside of the time
frame can result in unexpected behaviour. Since the covariates X are
provided together with the current time point and dose, any changes
in X can also affect how t and d are used by the model.

In figure 1.7b, a schematic representation of a recurrent network
architecture is shown. These models are often used to improve per-
formance when using time-series data. Here, hidden states h describe
how the dose and concentration evolve over time (represented by
h(1) and h(2), respectively). By using a recurrent architecture, time is
handled explicitly as the time window is discretized and the change
in h at each time step is evaluated. However, the model still has no
causal representation of the effect of dose, and is still prone to making
errors on unseen data.

When we compare the predictions from the three models when
the patient is given the true dose (see figure 1.7c; solid lines) and the
counterfactual case where no dose is given (dashed lines), we see that
all models erroneously predict drug exposure when no drug is admin-
istered. For simple counterfactual cases as in the above example, we
can explicitly train the model to reproduce the expected behaviour (no
drug exposure). However, preparing the model for all counterfactual
cases is fundamentally impossible. This means that specialised algo-
rithms adhering to existing concepts of pharmacometrics will need
to be developed. The development of a reliable and robust approach
that performs well on small data sets is an open problem.

1.3 objective

The objective of this thesis is three-fold:

i Identify opportunities for machine learning to enhance pharmaco-
metric analyses.

ii Develop a reliable and robust machine learning-based approach
for the prediction of drug exposure and effects in the rare disease
setting.

iii Apply machine learning methods to improve the treatment of
patients with haemophilia A.
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We focus on describing novel machine learning-based approaches
that facilitate more comprehensive analyses of data within the domain
of pharmacometrics. These models have important additional require-
ments within the context of the medical domain. Specifically within
the context of haemophilia A (and other rare diseases), we will be
looking to describe algorithms that reliably handle sparse data.

1.4 outline of this thesis

This thesis is divided into four parts. Part i and ii have a technical
focus, where we describe the adoption and development of novel
machine learning based architectures in pharmacometrics. Part iii has
a clinical focus, where we show how machine learning methods can
be applied to improve the prediction of FVIII exposure and treatment
outcomes in haemophilia A. In part iv we introduce the OPTI-CLOT
web-portal, a web-application aiming to improve the accessibility of
PK-guided dosing for treatment teams of patients with rare bleeding
disorders.

1.4.1 Part one: Machine learning in pharmacometrics

In part i, we discuss recent applications of machine learning within
the domain of pharmacometrics. In chapter 2, we performed a review
of the recent literature and discuss several opportunities for the im-
plementation of machine learning approaches in pharmacometrics.
In chapter 3, we describe one such approach in the context of covari-
ate selection, where machine learning algorithms are fit to data and
explainability methods are used in order to identify covariate effects.

1.4.2 Part two: Deep compartment models

In section ii, we present the deep compartment model (DCM) frame-
work as a reliable and robust approach for the prediction of drug
exposure and effects. In chapter 4, we present the general architecture
of the DCM and show how this method can reliably handle complex
dosing schedules. We also show that the algorithm still performs rea-
sonably well when data is sparse. In chapter 5, we continue building
on this framework by introducing additional forms of constraints to
model structure that further improve performance on sparse data
sets. In addition, we show that models can be designed in such a
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way that covariate effects can be visualised, making the model inher-
ently interpretable. Finally, in chapter 6, we facilitate the estimation
of mixed-effects, allowing model predictions to be adjusted based
on observed measurements. This is essential for implementation in
clinical practice, as individually adjusted predictions are used to sim-
ulate drug exposure and response to select individualised treatment
regimens.

1.4.3 Part three: Machine learning for improving the treatment of
patients with haemophilia A

In part iii, we discuss three examples where we use machine learn-
ing methods to tackle open issues in the treatment of haemophilia A
patients. First, in chapter 7, we describe how the DCM can be used
in a causal inference setting to create a model that can accurately
extrapolate to new conditions. Specifically, we are interested in the
counterfactual scenario where we estimate drug exposure if the patient
were given a different drug. In addition, we augment the model with
a generative component in order to impute missing covariate data.
Next, in chapter 8, we explore the differences in FVIII PK between the
prophylactic and perioperative setting. Here, the method from chapter
2 is used to identify covariates that explain observed differences in
FVIII exposure. In addition, we use GPs to identify time-dependent
changes in the postoperative clearance of FVIII to enable more ac-
curate prediction of FVIII exposure over time. Finally, in chapter 9,
we describe a novel approach for the personalisation of treatment
using factor concentrates based on individual bleeding risk rather
than just FVIII levels. Such an approach could significantly change the
approach for personalised treatment of patients with haemophilia A.

1.4.4 Part four: The OPTI-CLOT web-portal

Finally, in part iv, we describe the OPTI-CLOT web-portal, an online
web-application allowing physicians in the Netherlands to request
dosing advice for their patients with bleeding disorders. We describe
the architecture of the system, how patient privacy is protected as well
as its adoption.
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abstract

Pharmacometrics is a multidisciplinary field utilising mathematical models
of physiology, pharmacology, and disease to describe and quantify the in-
teractions between medication and patient. As these models become more
and more advanced, the need for advanced data analysis tools grows. Re-
cently, there has been much interest in the adoption of machine learning
(ML) algorithms. These algorithms offer strong function approximation ca-
pabilities and might reduce the time spent on model development. However,
ML tools are not yet an integral part of the pharmacometrics workflow. The
goal of this work is to discuss how ML algorithms have been applied in
four stages of the pharmacometrics pipeline: data preparation, hypothesis
generation, predictive modelling, and model validation. We will also discuss
considerations before the use of ML algorithms with respect to each topic.
We conclude by summarising applications that hold potential for adoption by
pharmacometricians.
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2.1 introduction

2.1.1 Background

Pharmacometrics is a multidisciplinary field utilising mathematical
models of physiology, pharmacology, and disease to describe and
quantify the interactions between medication and patient. This in-
volves models of drug pharmacokinetics (PK), pharmacodynamics
(PD), exposure-response (PK/PD), and disease progression. One of
the main themes of interest is the explanation of variability in drug
response between patients. Various statistical techniques have been
adopted to quantify such inter-individual variation (IIV) [1].

Non-linear mixed effect (NLME) modelling has been embraced as a
statistical method for describing treatment effect on a population and
individual level [2, 3]. Population PK modelling makes efficient use
of sparse data by pooling information of multiple individuals, and
breaking down treatment response in shared and individual effects.
Observations of the dependent variable (i.e., drug concentrations or
treatment effect) can then be used to adapt the prediction to the
individual patient, resulting in higher accuracy.

Recently, however, advances in hospital digitisation, data collection,
and inclusion of increasingly extensive laboratory testing in standard
clinical care have resulted in the availability of richer data sets. This
increased accessibility of complex data sources such as genomic or
gene expression data stresses current modelling approaches as they
can lack the flexibility to handle these data. As a response, more atten-
tion is being paid to the opportunity of using machine learning (ML)
algorithms as an innovative strategy for pharmacometric modelling [4,
5]. The field of ML has seen an explosive boost of promising applica-
tions for image analysis, text recognition, and other high-dimensional
data. There are many examples of their successful application in the
medical domain, for example for the diagnosis of breast cancer [6],
identification of biomarkers from gene expression data [7], and sur-
vival analysis [8]. As ML methods offer strong predictive performance
there is no denying that its adoption in pharmacometrics brings with
it exciting new modelling opportunities.

As the relatively young ML research field is maturing at a rapid
pace, more advanced model architectures are frequently being pro-
posed in order to further improve predictive accuracy. Consequently,
understanding the differences and intricacies of distinct learning meth-
ods is becoming increasingly more difficult for non-experts. A proper



2.1 introduction 29

understanding of the advantages and pitfalls of these methods is
essential for their responsible and reliable use, especially for clinical
applications. As most of the emphasis has been put on the supposed
high predictive accuracy of ML methods, it is easy to become overcon-
fident in their abilities. It is thus important to monitor and guide the
adoption of ML in pharmacometrics.

In this review, we will discuss recent approaches for the use of ML
algorithms in the context of pharmacometrics, while also providing
important considerations for their use. For some examples, we will
provide demonstrations based on simulation experiments. We also
discuss the important concept of model validation and the importance
of understanding what is actually learned by the algorithm.

In this work, we will be assuming a general understanding of ML
and the most common algorithms. For those wanting to learn more
about the basic concepts of ML, Badillo et al. offer an excellent tutorial
on ML aimed at pharmacometricians [9].

2.1.2 Structure of this review

This review is structured as follows. First, we discuss applications
of ML algorithms in three stages of the pharmacometrics pipeline:
data preparation, hypothesis generation, and predictive modelling. We
define these stages as follows: data preparation deals with the imputa-
tion of missing data and dimensionality reduction. Next, in the section
on hypothesis generation we discuss methods for clustering data, and
how ML can be used for the detection of influential covariates. In
the predictive modelling section, we discuss ML-based alternatives
to traditional modelling approaches. We will conclude our review of
recent application with a discussion on model validation, focusing
mainly on estimating model generalisability and the interpretation of
ML models.

For each topic, we first discuss the current approach, its (possible)
limitations, followed by what ML techniques have been proposed to
address the issues. At the end of each topic, we will summarise the
discussion with considerations for the use of ML for each issue.

2.1.3 Literature search

In order to support the initial framing of our discussion we performed
a literature search. Our objective was to find recent articles discussing
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ML in the context of pharmacometrics. The following search query
for PubMed was constructed:

("machine learning" [tiab] OR "artificial intelligence"

[tiab] OR "random forest" [tiab] OR "gradient

boosting" [tiab] OR "XGBoost" [tiab] OR "support

vector" [tiab] OR "neural network" [tiab] OR "deep

learning" [tiab]) AND ("pharmacometric*" OR "

pharmacokinetic*" OR "pharmacodynamic*" [tiab] OR "

pharmacogen*" [tiab] OR "drug concentration" [tiab]

OR "dose estimation" [tiab] OR "dose optimization" [

tiab]) AND ("2016/01/01" [Date - Publication]:

"3000" [Date - Publication]) NOT (review[Publication

Type]).

The search identified a total of 586 articles (as of 30 May 2022),
of which 198 were included based on abstract screening. Additional
articles were obtained by means of scanning the reference lists of
included articles, or by specifically searching in the arXiv database
(https://arxiv.org/; accessed from 30 May 2022 until 30 June 2022).
Some ML papers are only indexed in pre-print servers, and thus can
not be found in PubMed.

2.2 data preparation

2.2.1 Data Imputation

Missing data are a frequent occurrence in the clinical setting. When
encountering missing data one can drop all data entries or covariates
with missing data, impute missing data, or employ maximum likeli-
hood estimation techniques. As many clinical data sets are relatively
small, the latter two options are often preferred. Missing data are often
categorised in one of three categories; they are either missing com-
pletely at random (MCAR), missing at random (MAR; missingness
depends on observed data), or missing not at random (MNAR; miss-
ingness depends on unobserved data). The source of the missing data
can affect the choice of imputation method. In addition, the type of
data (i.e., continuous or categorical) can also be a reason for choosing
different methods. In the below sections, we will focus on the problem
of data imputation, which requires us to choose an appropriate model
for the prediction of missing data. How do we select such a model?
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2.2.1.1 Standard Methods for Data Imputation

Imputation can either be performed once (single imputation), or mul-
tiple times (multiple imputation). Commonly used methods for single
imputation include imputation by mean or mode, grouping missing
data in a separate category (in the case of categorical covariates), or
regression-based imputation. In multiple imputation, multiple sam-
ples are taken from a predictive distribution allowing for the quan-
tification of the resulting variance of model output. This provides
a measure of uncertainty of the imputation. A Bayesian multiple
imputation strategy has been proposed for NLME models, which
presented lower bias of parameter estimates compared to mean value
imputation for MCAR and MAR data [10]. A maximum likelihood
procedure based on this strategy was also shown to lead to less biased
PK parameter estimates compared to mode and logistic regression
based approaches [11]. Prior studies have been mainly concerned with
the imputation of categorical variables. Model-based (i.e., multiple
imputation and likelihood-based) approaches seem to perform well
for this kind of data, but do require one to make assumption about
the distribution of the data. This can be more difficult for continu-
ous variables. In these cases, it might be compelling to also evaluate
regression-based techniques for imputation. Unfortunately, choosing
an appropriate regression model when the assumed relationship is
non-linear can be difficult. This is especially the case when covariates
are correlated. For this reason, ML-based regression techniques have
been suggested with the goal of improving the accuracy of regression-
based imputation. An early study suggests that when covariates are
simulated based on non-linear relationships, the bias of PK parameters
after performing imputation can be reduced by using a random forest
or neural network prediction model rather than mean imputation [12].

2.2.1.2 Machine Learning Methods for Data Imputation

A paper by Batista and Mondard compared the accuracy of the k-
nearest neighbour (k-NN) method to mode, decision tree, and rule-
based methods for MCAR data imputation [13]. They found that
k-NN generally was the most accurate method. In k-NN, individu-
als are grouped in k clusters based on similarity (for example based
on Euclidean distance). Next, missing values can be imputed based
on mean/median values from their respective cluster. The method
is simple to implement, but might be less effective in small or very
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homogeneous data sets. Although Batista and Mondard found that
the decision tree-based method was not as accurate, random forest-
based approaches have been more successful [14–16]. In the popular
implementation missForest [14], a random forest is combined with
multiple imputation by chained equations (MICE; [17]). MICE is an
iterative procedure where each missing covariate is imputed based on
the remaining covariates. Initially, missing data are imputed using an
arbitrary method (e.g., by their mode) and a model is fit to predict
missing data for each covariate independently. This process is repeated
with the assumption that each iteration, more accurate imputations
of the covariates are used for the predictions. The overall process can
be repeated for multiple initial data sets. This way, MICE allows for
multiple imputation based on deterministic regression models. Using
missForest outperformed k-NN and linear MICE for single imputation
of MCAR data [14]. However, performing multiple imputation using
linear MICE was more accurate than single imputation using missFor-
est on MCAR and MAR data [15]. Performing multiple imputation
using missForest led to the overall best accuracy. This implies that
multiple imputation procedures might also generally be preferred for
regression-based imputation.

Several probabilistic approaches have also been proposed for per-
forming regression-based multiple imputation. Unsupervised deep la-
tent variable models, such as generative adversarial networks (GANs)
and variational auto-encoders (VAE), have recently been successfully
applied to data imputation problems [18, 19]. A GAN is a combina-
tion of two neural networks, a generator and a discriminator, which
compete against each other. The discriminator learns to discern true
from generated data, such that the generator becomes increasingly
effective at reproducing real data. The generator learns to represent
the generative distribution of the data. The GAIN approach, a GAN
specifically developed for the imputation of missing data, was found
to more accurately impute MCAR and MAR compared to missForest
and MICE [18].

A VAE is a special neural network architecture that learns to encode
its input into a distribution of latent variables by means of variational
inference. A decoder neural network is then learned to reproduce the
original input from samples of this distribution. Mattei and Frellsen
describe the combination of an importance-weighted auto-encoder
with a maximum likelihood objective for imputation of MAR data.
This method was found to be more accurate than k-NN and missForest
[19].
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Finally, Gaussian Processes (GPs) are stochastic processes which
represent a prior distribution over latent functions. GPs are a non-
parametric framework to fit models to data, while simultaneously
providing a measure of variance. This allows one to sample from the
distribution of latent functions and perform multiple imputation. A
recent study has proposed a deep GP approach which suggested more
accurate imputation of MCAR data compared to k-NN, MICE, and
GAIN [20].

2.2.1.3 Considerations

We have described several ML techniques for data imputation. These
techniques might offer improved imputation of covariates that have
non-linear relationships with the non-missing covariates. Several find-
ings point to improved performance of regression models when using
multiple imputation compared to single imputation. Since most stan-
dard regression methods are deterministic, strategies such as MICE
are advisable for performing multiple imputation. Using missForest in
this context might improve the prediction of more complex covariates.
MICE is flexible in that a different model can be used for imputation
of each covariate. We can thus use ML methods for the prediction
of non-linear covariates while using likelihood-based approaches for
categorical covariates. This might be a promising method to explore
in the context of NLME modelling. Recent probabilistic approaches,
such as deep latent variable models and GPs, offer an interesting take
on regression-based imputation. These methods use likelihood-based
approach which might improve imputation accuracy [18–20]. However,
it is not clear if more accurate methods of data imputation offer signif-
icant benefits in terms of reducing the bias of parameter estimates in
NLME models. Studies will have to evaluate the benefit of using these
more complex methods in the context of pharmacometric modelling.

2.2.2 Dimensionality Reduction

Dimensionality reduction is a technique for detecting patterns in data
and reducing this to a lower number of principal components. This
can be useful when analysing very high-dimensional data (e.g., gene
expression data). Such data are difficult to include in pharmacomet-
ric models (and thus rarely are) as their effect might be dependent
on a specific combination of patterns. One of the main linear tech-
niques for dimensionality reduction is principal component analysis
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(PCA). It uses a linear mapping to project each data point to a lower-
dimensional representation. The so called principal components are
independent and aim to preserve as much of the original variance in
the data. Such decompositions can be used to facilitate data visual-
isation and can be used for hypothesis generation (see Section 2.3).
This technique has for example been used to predict the impact of
different factor VIII mutations on haemophilia A disease severity [21].
Here, 544 amino acid properties were collected, which they were able
to reduce to 19 components using PCA. The researchers could thus
drastically reduce data dimensionality while reportedly retaining 99%
of the information in the data set.

Non-linear methods have also been proposed which allow a more
flexible mapping to lower-dimensional space. This way, these methods
might be able to represent more complex patterns and thus increase
the explained variance. One example is the VAE, where the input data
are condensed into a set of latent variables. Other prominent examples
include uniform manifold approximation and projection (UMAP) [22]
and t-distributed stochastic neighbour embedding (t-SNE) [23]. Xiang
et al., have recently performed a comparison of ten dimensionality
reduction methods for predicting cell type from RNA sequencing data
[24]. Although the study shows that no one-size-fits-all method exists,
UMAP, t-SNE, and VAE were found to generally outperform other
methods of dimensionality reduction. Accuracy of PCA was also high,
but it suffered in terms of stability with respect to changes in the
number of cells, cell types, and genes.

Another study by Becht et al., compared t-SNE to UMAP to discern
cell populations based on patterns in single-cell RNA sequencing data
[25]. In their case, UMAP led to more reproducible results and more
meaningful visualisations. This is in contrast to the results of Xiang et
al., which found t-SNE to be the best performing method [24].

2.2.2.1 Considerations

To our knowledge, the use of dimensionality reduction techniques
in the context of pharmacometrics is still quite limited. One of its
current principal uses might be as a pre-processing step for generat-
ing hypotheses. The lower dimensional representations are ideal for
visualisation and can be used to detect patterns in otherwise complex
data. However, one downside can be that the meaning of the resulting
lower dimensional components might be difficult to interpret. In a two
dimensional t-SNE visualisation for example, samples that are closer
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together and thus more similar would also have been more similar in
high dimensional space. The actual features underpinning this simi-
larity can not be discerned from the analysis. In such cases, further
inspection of the data would be required to identify the explaining
covariates. Another downside is that most of these methods require
re-analysis of the data when including new samples. In addition, for
each new sample we need to collect the same data to produce the
lower dimensional representation.

An important finding is that there might not necessarily be a best
method for performing dimensionality reduction [24]. This suggests
that different methods should be compared based on the predictive
performance of the resulting principal components. However, from
our literature search we found that it was more common to use ML to
directly learn to predict the outcome of interest from high-dimensional
data and select influential covariates for downstream analysis [26–28].
We will further discuss such approaches in the context of covariate
selection in Section 2.3. It is unclear how such an approach compares
to the above-mentioned methods for dimensionality reduction. More
studies are needed to explore the benefit of using these different
techniques.

2.3 hypothesis generation

2.3.1 Discovery of Patient Sub-Populations

Detecting patient subgroups can help to understand why groups of
individuals respond differently to treatment. We found several stud-
ies that describe the use of clustering techniques in the context of
pharmacometrics. Most focus on grouping patients based on the simi-
larity in terms of treatment response. Kapralos and Dokoumetzidis
describe the use of k-means clustering for the detection of two patient
sub-populations presenting distinctly different absorption patterns of
Octreotide LAR [29]. Here, they used the Fréchet distance to define
similarity between patients, which can be used to calculate the simi-
larity of longitudinal data in terms of shape. These kinds of measures
however do require that all patients are sampled at similar time points.
This can be difficult to achieve in practice.

Another study describes the use of mixture models for dividing
patients into different classes based on treatment response [30]. Next,
the study attempted to predict subgroup based on patient characteris-
tics. This allowed for the identification of clinical indicators that were
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associated with the different subgroups. The resulting seven treatment
classes were validated in an external data set. This study offers a nice
representation how clustering can be used for hypothesis generation
and subsequent analysis.

Clustering assumptions can also be implemented within predictive
models. In one study, an expectation maximisation (EM) approach is
used to group individuals based on drug concentration data and a
predefined compartment model [31]. Each cluster has its own distinct
reparameterisation and estimate of (residual) variance. This allows us
to categorise new patients to a cluster and treat them as were similar
patients. Another study has taken an interesting approach where a
mixture model-based algorithm is described for grouping individuals
into different PK models [32]. These PK models are automatically
constructed during the clustering procedure. This approach can thus
also be used to generate hypotheses about the appropriate PK models
to use for different patient groups. Requirement of a predefined model
can also be avoided by combining clustering and supervised ML
algorithms. Chapfuwa et al., describe a model for clustering patients in
the context of time-to-event analysis [33]. A neural network is used
to represent the covariates into a latent variable space, which is made
to behave as a mixture of distributions. Each individual is assigned
to a cluster in the latent space which contains a corresponding event-
time distribution. This allows for the identification of heterogeneous
treatment response groups based on covariate data.

2.3.1.1 Considerations

We have discussed examples of studies that have used k-means and
mixture models to cluster patients in subgroups. Mixture models
allow for probabilistic inference, and have been used in more complex
model architectures [31–33]. These approaches are experimental, but
may be of interest to apply to different problems for the purpose of
hypothesis generation. Both mixture models and k-means require the
user to specify the number of clusters beforehand. This can be difficult
when there is no prior information to choose the number of subgroups
or when the data cannot be visualised due to high-dimensionality.
In those cases, we can either reduce data dimensionality (see Section
2.2.2), or use some criterion to select the optimal number of clusters
[30, 34]. An additional downside of mixture models is that they are
sensitive to local minima. One study found that prior initialisation
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based on k-means++ (an adaptation of k-means) allows for a simple
procedure to improve model convergence [35].

Clustering patients based on the dependent variable can pose issues
in pharmacometric modelling. For example, difficulties arise when
clustering patients based on drug concentration measurements when
these are collected at different time points. Aside from increasing the
speed of processing many samples, the benefit of clustering based
solely on the dependent variable might be unclear when differences
in drug exposure can be easily discerned from the concentration–time
curve. Alternatively, clustering patients based on (individual) PK pa-
rameters, summary variables such as area under the concentration
time curve (AUC), or independent variables might be more informa-
tive in practice.

2.3.2 Covariate Selection

Considering the black-box nature of most ML algorithms, why would
one consider using ML for covariate selection? Step-wise covariate
modelling (SCM), which is perhaps the most commonly used covariate
selection method in pharmacometrics, also has its limitations [36].
Step-wise approaches can lead to difficulties when the data contains
many covariates, when there is high collinearity, or when covariate
effects are highly non-linear and difficult to determine a priori. The
potential of ML-algorithms in this context is that they can be used
to learn the optimal implementation of covariates. By performing
post-hoc analyses of the model, it can then be possible to determine
influential covariates. In the below sections we first discuss limitations
of step-wise methods in order to suggest a set of requirements for a
successful covariate selection method. Next, we describe ML methods
that have been used for this purpose and evaluate if they fit the derived
requirements.

2.3.2.1 Limitations of Step-wise Covariate Selection Methods

In SCM, covariates are included one by one (forward inclusion), and
each time the covariate leading to the largest significant decrease in
objective function value is included. After all covariates have been
tested, the included covariates are removed from the full model one
by one (backward elimination). The covariates that do not result in
a significant increase in objective function value are removed. This
approach leads to some issues. First, due to the potentially large
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number of statistical tests there is a risk of multiplicity. Second, for an
honest implementation of step-wise methods, all hypotheses need to
be defined beforehand. This includes all covariates to consider and
their functional form. The latter can be quite difficult to determine
without first extensively inspecting the data. Finally, the statistical tests
are not independent, since the significance of the tests might depend
on how and if other covariates have been included. This is especially
a problem when there is high collinearity between covariates. Studies
have indeed indicated that SCM has a relatively low power when
covariates are correlated, have weak effects, or when the number of
observations in the data set is limited [37–39].

To reduce the effect of multiplicity and to ensure tests are inde-
pendent, full model methods are preferred [36]. However, this does
not resolve the issue of choosing a suitable functional form to imple-
ment each covariate a priori. We suggest the following definition of
ideal covariate selection method: it (1) should perform a full model
fit (i.e., test multiple hypotheses simultaneously); (2) should be able
to learn covariate relationships from data; while (3) penalising com-
plex solutions (e.g., by regularisation); and (4) should allow for the
interpretation of resulting relationships. If the method is unable to
learn optimal implementations of covariates, we risk making type II
errors. If the method does not constrain model complexity it risks
inflating the importance of covariates (by fitting arbitrarily complex
relationships) resulting in higher type I error. Finally, if the method is
not interpretable, we run into problems when actually implementing
the selected covariates. If sub-optimal functions are used to implement
the selected covariates, they might still result in insignificant effects.

2.3.2.2 Linear Machine Learning Methods

The least absolute shrinkage and selection operator, or LASSO, is a
regression-based method that performs covariate selection by regulari-
sation. The LASSO employs the ℓ1-norm, which penalises the absolute
size of the regression coefficients β. This causes the coefficients of
unimportant covariates to be shrunk to exactly zero. All covariates
of interest are tested simultaneously in the form of linear equations
using a full model fit. Next, a hyperparameter s, which controls the
size of β such that ∑Ncov

j=1 |β j| ≤ s, can be selected using cross-validation
procedures. The use of s is a substitution for statistical testing as
only the most important covariates will have coefficients greater than
zero. The LASSO has seen applications for population PK and Cox
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hazard models where it outperformed step-wise methods in terms of
speed and predictive accuracy [38, 40]. Owing to its simplicity, direct
integration into the non-linear mixed effects procedure is possible
[38].

The LASSO performs a full model fit, penalises complex solutions,
and is interpretable. However, due to the assumption of linear rela-
tionships the LASSO fails to meet our second requirement. Since this
assumption might not hold for all covariates, there is a risk of type I
errors in covariate selection. Although the predictive performance of
the LASSO holds up relatively well [41], its performance suffers when
the relationship of some of the covariates are non-linear [42].

Multivariate adaptive regression splines (MARS) is a ML algorithm
for the approximation of non-linear functions based on piece-wise lin-
ear basis functions [43]. The method automatically learns the optimal
number of splines and their location for single covariates and their
combinations. Its classic implementation uses a step-wise approach
to prune the number of basis functions to reduce model complex-
ity. Alternatively, a LASSO-based implementation of MARS has been
described which presented favourable performance compared to the
classic approach [44]. This method has the potential of matching our
requirements, but has not yet seen frequent use for the purpose of
covariate selection. We have found one abstract mentioning its use, but
it did not explore its benefit for approximating non-linear functions
[45].

2.3.2.3 Tree-Based Methods

Tree-based ML algorithms, such as the random forest and gradient
boosting trees, have seen recent applications for the purpose of co-
variate selection. These methods offer a flexible approach to learning
non-linear functions, while offering a large number of hyperparam-
eters that can be tuned for regularisation. Maximum tree depth, the
change in minimum objective function change required for a split, or
the minimal number of samples in each node can be empirically set
(or automatically using cross validation) to reduce model complexity.
The method fits our first three requirements, although the effects of
regularisation are more difficult to interpret compared to the ℓ1-norm.
In order to use tree-based methods for covariate selection, covariate im-
portance scores based on “impurity” (also known as Gini importance)
or permutation are often calculated. The covariates can be ranked
based on these scores. Covariates can be included based on biological
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plausibility or if they meet a certain threshold [46]. Permutation-based
methods are preferred over impurity based methods as the latter can
be biased for differently scaled or high cardinal covariates [47]. Simu-
lation studies seem to suggest relative accurate identification of true
covariates [42, 48].

It is important to note that there is no underlying theory that sup-
ports the use of these scores as selection criteria. In addition, another
problem is that these scores do not provide information on what func-
tional form to use in order to implement the covariate. It is possible
that the relationship underlying the importance has a complicated
functional form, and is less important when approximated using basic
functions in the final model. As-is, this approach does not meet our
requirement of interpretability. Novel approaches such as explain-
able gradient boosting [49, 50], might improve the interpretability of
tree-based models.

2.3.2.4 Genetic Algorithms

Genetic algorithms are a special form of search space optimization
techniques that rely on evolutionary concepts such as natural selection,
cross-over, and random mutation for selecting the most optimal model.
They have long been suggested as an alternative approach to model se-
lection for pharmacometric applications [51]. Genetic algorithms allow
for testing many opposing hypotheses with respect to model structure
simultaneously. In this way, it matches our first requirement. Its direct
output is an optimal model (according to the survival function) and
matches our fourth requirement. The general procedure is as follows:
first, the full search space is defined, containing all model features
to be considered. Next, an objective function is chosen that describes
model fitness. Usually this is a combination of the log likelihood of
the model and additional penalties for model complexity. Then an
initial population is formed containing random combinations of the
selected features. For each model, the fitness function is evaluated
and the ‘fittest’ models are selected to produce the next generation.
This process is repeated for several iterations or when a stopping
criteria is met. Since many models have to be fit and evaluated the
computational cost of fitting genetic algorithms can be relatively high.

A recent study describes the development of a software-based
resource for automating model selection using genetic algorithms,
improving their accessibility [52]. This application was compared to
step-wise methods and seemed to more accurately recover the true
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model based on simulated data. Such comparisons are however dif-
ficult to make, since the penalty for model complexity was more
conservative in the case of the step-wise methods versus the genetic
algorithm. The reverse was found in another study, where a stricter
fitness function resulted in overly simplified models [53]. Choosing
an appropriate fitness function by balancing model accuracy and com-
plexity is not straightforward. It is possible to use heuristic methods
such as the Akaike or Bayesian information criterion, but it is likely
that there is no one-size-fits-all solution. In addition, the method can-
not be used to learn more complex representations of the covariates
than were originally included in the search space. Genetic algorithms
thus do not meet our second requirement.

2.3.2.5 Considerations

We have discussed several ML algorithms that can be used for co-
variate selection. We also proposed four requirements that underlie
an ideal covariate selection tool. All discussed methods test all hy-
potheses simultaneously and match our first requirement. The LASSO
offers the most comprehensible approach to regularisation but might
risk higher type I error due to its assumption of linear relationships.
More complex ML algorithms, such as tree-based methods, are more
flexible with respect to the representation of non-linear relationships.
Perhaps not surprisingly, these methods also suffer the greatest in
terms of interpretability (with the exclusion of decision trees). This
makes it difficult to translate the results of covariate importance to an
appropriate model. The current principal use of tree-based methods
might thus be for selecting covariates for subsequent analysis.

The MARS and explainable gradient boosting algorithms come clos-
est to meeting all four requirements. By using piece-wise linear func-
tions, MARS approximates non-linear functions and is interpretable.
In explainable gradient boosting, a large number of simple models
(e.g., small depth decision trees) are fit to each covariate, and rela-
tionships can be visualised by summarising over these models. The
visualisations obtained from both methods could be useful in provid-
ing an initial intuition about the appropriate functional form to use
when implementing covariates. Alternatively, model interpretation
methods might be of interest to infer covariate relationships from ML
models. We have previously performed an investigation into how one
such explanation method can be used to visualise the relationships
between covariates and estimated PK parameters [54]. We found that
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these relationships matched implementations in previous PK models
and biological concepts. It might be of interest to further investigate
the application of such tools in the context of pharmacometrics. Model
explanation methods will be further discussed in Section 2.6.

We have performed a simple simulation study (see Appendix 2.A
for implementation details) to showcase the use of some of the previ-
ously mentioned methods for covariate selection. Each method was fit
to predict individual clearance estimates based on covariate data con-
taining two true covariates and 48 noise covariates. In figure 2.1, we
depict the measures of covariate importance as determined by means
of LASSO, MARS, random forest, or explainable gradient boosting.
Each method has correctly identified the two true covariates as impor-
tant. In addition, we have depicted the approximation of the covariate
effect by MARS and explainable gradient boosting (see figure 2.1E,F).

Figure 2.1: Examples of machine learning-based covariate importance
scores. LASSO coefficients (A), random forest importance scores (B),
MARS covariate importance (C), explainable gradient boosting scores (D),
MARS (E) and explainable gradient boosting (F) approximation of the
effect of covariate 1 are shown. Coloured bars indicate true covariates,
whereas white bars represent noise covariates. Bar height represents
the importance of each covariate. Importance should be larger for true
covariates than for noise covariates. The resulting scores can for example
be used to select covariates eligible for inclusion in a NLME model.
Error bars indicate standard deviation of each score following a ten-fold
cross validation. In (E), the point indicates the piece-wise split location
(i.e., a knot). In (F), shaded area represents the standard deviation of
model predictions in the explainable gradient boosting model. Figure
inset represents the function used for covariate 1 in the simulations.
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We have also discussed the use of genetic algorithms for automation
of model selection. Compared to local search or step-wise methods,
genetic algorithms offer an intuitive procedure based on evolutionary
concepts for simultaneously testing multiple hypotheses with respect
to model selection. Software-based resources such as presented by
Ismail et al., could help improve accessibility for performing experi-
ments based on genetic algorithms [52]. Although they might be an
improvement compared to step-wise methods, genetic algorithms do
not meet the suggested requirements for a comprehensive covariate
selection method. The main issue lies with selecting an appropriate
fitness function. There is no consensus on a generally applicable fit-
ness function. This is worrisome, as choosing an inappropriate fitness
function can negatively affect the result.

In summary, none of the presented approaches can meet all our
requirements for an ideal covariate selection method. Their purpose
might thus mainly be for providing a more informed set of covariates
to test. We have mentioned some methods such as MARS and ex-
plainable gradient boosting which might also provide intuition about
appropriate functional forms to use. Next, genetic algorithms can be
used as a full model based approach to testing the hypotheses. More
research is however required to optimise this procedure.

2.4 predictive models

2.4.1 Machine Learning for Pharmacokinetic Modelling

The development of NLME models is a time-consuming process and
requires extensive domain knowledge. Recently, ML algorithms have
seen applications as efficient alternatives to NLME modelling [55–58].
Aside from reducing the time spend on the model building process,
ML algorithms can be used as a flexible approach to handle complex
and high-dimensional data sources. For example, ML algorithms have
been used to directly estimate PK parameters from dynamic contrast
enhanced MRI images [59], or to screen almost 2000 genetic markers
to find variants affecting tacrolimus exposure [60].

Our search identified many different ML algorithms used for phar-
macokinetic modelling. However, we observe that most of these mod-
els suffer from problems impeding their reliable use. For example,
most models take the current time and drug dose as direct inputs.
Aside from leading to issues when multiple drug doses are given, it
is uncertain how these inputs will be interpreted by the model. In
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addition, some models are trained to predict drug concentrations at
specific time points, making them unreliable when extrapolating to
unseen time points. Finally, since the translation from covariates to
drug concentrations can be quite non-linear, these models are prone
to overfitting and might require larger data sets in order to generalise
well. Based on these issues, we again suggest a set of requirements:
(1) the model should be able to produce a continuous solution (i.e.,
extrapolate to unseen time points); (2) it should be able to adapt to
complex treatment schedules (e.g., frequent dosing, mixing different
types of administration); (3) it should be able to handle differences
in the timing and the number of measurements per patient; and (4)
should be reasonably interpretable. Below, we discuss several of the
ML algorithms obtained from our literature search and identify two
reliable methods for predicting drug concentrations.

2.4.1.1 Evaluation of Different Approaches

A basic strategy has been to directly predict the concentration-time
response based on patient characteristics (e.g., covariates), the dose,
and the current time point of interest [55, 57]. By predicting a single
concentration, we can make independent predictions at each time
point per patient. This way, we can meet requirement one and three.
In order to satisfy requirement two, we must treat each dosing event as
independent and add the remaining concentration from the previous
dosing event to the current prediction. A problem with this approach
is that the prediction does not represent the total concentration of
drug in the body (usually only blood levels) so we lose information
about drug accumulation in peripheral tissue. In addition, we assume
that the model will learn to predict drug exposure based on the
covariates, make adjustments based on the dose, and use the supplied
time point to obtain the concentration along the time dimension. It is
impossible to completely validate that the model uses these quantities
as assumed.

We can however easily show that this approach is unreliable. We
performed a simulation study using a neural network to predict
real-life warfarin concentrations based on patient age, sex, the dose
given at t0, and the time point for which to evaluate (see Appendix
2.B for implementation details). The neural network can provide a
continuous solution (figure 2.2A), and is reasonably able to represent
the kinetics of warfarin (e.g., it seems to recognise its absorption
and early distribution behaviour). However, when we extend the time
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Figure 2.2: Examples of predicting drug concentrations using neural
networks. Concentration-time curves for a single test set patient are
shown as predicted using naive (A) and ODE-based (B) neural networks.
Model prediction when artificially setting the dose to zero is depicted by
the coloured lines. Stars represent the measured warfarin concentrations
for the patient.

frame beyond what was seen during training, we found that the model
incorrectly predicts an increase in the exposure (data not shown). In
addition, when artificially setting the dose to zero, the model still
predicts a response. Admittedly, we can use data augmentation to
learn the neural network to predict no exposure when the dose is zero,
or when the time point is long after dose administration. We cannot
however augment the data with counterfactual cases (specifically with
respect to the given dose) and thus the method is inherently unreliable.

Other approaches have used ML to learn optimal dose or AUC in-
stead of a full concentration-time response [61–63]. These approaches
have their own issues. They will likely be more accurate when mea-
surements are provided as input, resulting in problems relating to
requirement three. In addition, it is more difficult to interpret the cred-
ibility of the current prediction. In our previous example we could
identify problems with the concentration-time curve, but in the case
of direct AUC or optimal dose predictions it is more difficult to for
example validate the prediction based on visualisations. Interpretation
of the model using covariate importance scores can also be difficult
[63]. Determination of the AUC or optimal dose based on a predic-
tion of a full concentration-time curve, which can be verified by the
observed measurements, will likely still be a more reliable approach.

The next strategy might thus be to use more complex ML algorithms
better suited to time-series predictions, such as recurrent neural net-
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works [56, 58, 64, 65]. These studies suggest that these methods can
indeed accurately predict the changing drug concentration over time
in the context of multiple dosing events [56, 58, 65]. However, Lu et al.,
found that such methods did not extrapolate well to unseen dosing
schedules [58]. Alternatively, the authors suggest a neural-ODE based
approach. Here, a neural network is used to encode the covariates into
a latent variable space z, which serves as the input to an ordinary dif-
ferential equation (ODE) solver. This solver is a neural-ODE, a special
form of recurrent neural network that learns to represent continuous
dynamics similar to an ODE [66]. The neural-ODE is used to explicitly
integrate the dosing and timing information. The resulting latent vari-
ables adjusted for the current time point are then fed into a decoder
network, which produces concentration predictions. They show that
this approach does correctly extrapolate to unseen dosing schedules,
while also identifying no exposure when the dose is artificially set to
zero [58]. This model fits our first three requirements. However, the
model architecture is quite complex, and can be difficult to interpret.

We have also recently proposed a similar approach where we di-
rectly combine neural networks and ODEs [67]. Here, we also use an
encoder network to transform the covariates into latent space vari-
ables. In contrast to the neural-ODE approach, we explicitly formulate
an ODE system based on compartment models. Dosing events are
then used to perturb this ODE system, which directly outputs con-
centration predictions at the desired time points. This offers several
benefits over a neural-ODE: first, by explicitly defining drug kinet-
ics we might reduce the data required to fit the model by imposing
explicit constraints. Second, the latent variables now represent PK
parameters (e.g., clearance or volume of distribution), which can be
compared to previous results. Finally, since we are using a known
ODE system, model predictions are credible and interpretable. This
way, the method is a better match to requirement four compared to
neural-ODE based methods.

2.4.1.2 Considerations

The last two approaches indicate that ODE-based ML methods are
more reliable for the prediction of drug concentrations. In figure 2.2,
we present a comparison between a naive and ODE-based architecture.
We see that only the latter correctly identifies the absence of concentra-
tion response when the dose is set to zero (figure 2.2B). A neural-ODE
can be used to learn the kinetics underlying drug exposure, whereas
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an explicit ODE system can be used when prior knowledge is available.
It is of interest to compare the performance of both these methods.

One remaining opportunity lies with the characterisation of pre-
diction uncertainty. In NLME models, the estimation of residual IIV
allows for MAP estimation of the PK parameters to correct the predic-
tion based on concentration measurements. Adding this functionality
to the above ODE-based models might be of interest for encouraging
their adoption in general practice [68]. One approach for obtaining an
estimate of predictive and parameter uncertainty are deep ensembles
[69]. Here, the predictions of multiple randomly initialised neural
networks are combined, and the mean and variance of predictions is
presented. This approach is simple to implement and might outper-
form methods that explicitly estimate parameter uncertainty, such as
Bayesian neural networks [70].

Finally, one important aspect of the pharmacometrics pipeline is
simulation. As we have shown by removing the dosing event for the
neural networks in our example, actively searching for errors in our
model is essential for its evaluation. Learning if new patients are
different from the data that the model was trained on might help to
provide intuition about cases where we trust model output and cases
we do not. Simulation is an important approach for facilitating such
analyses. We further discuss the topic of model validation in Section
2.5.

2.4.2 Machine Learning for Predicting Treatment Effects

In the wake of -omics research, the interest to personalise patient
treatment based on gene or protein expression profiles has increased
greatly. High-dimensional data sources stress classical statistical mod-
elling approaches, and many have turned to ML-based approaches [7,
26, 27]. In addition, some conventional methods such as the cox pro-
portional hazard model, assume linear relationships with covariates.
This has prompted the development of tree-based survival models [8],
which might be better suited to problems where non-linear interac-
tions can be expected [48]. In the following sections we will focus on
the application of ML algorithms for exposure–response modelling
(PK/PD models) and survival analysis (time-to-event models).
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2.4.2.1 Exposure-Response Modelling

Exposure-response modelling involves the prediction of treatment
effect in relation to the current dose or concentration of an admin-
istered drug. It is similar to PK modelling in that it often involves
the use of differential equations for describing the dynamics of drug
action (e.g., target-site distribution or target binding). Likewise, it is
possible to use ODE-based neural network architectures to learn the
effects of covariates on model parameters. However, the assumptions
underlying the chosen ODE system are often weaker than in the case
of PK models [71].

One can discern two types of model components: drug-specific and
biological system-specific properties [72]. Drug-specific properties,
such as receptor affinity, can be estimated from in vitro data. Biologi-
cal system-specific properties, such as protein or receptor expression,
can only be measured in vivo and can be highly variable between
individuals. The latter properties are thus especially sensitive to er-
rors in modelling assumptions. In addition, these effects are often
governed by highly non-linear relationships [72]. One approach can
be to use neural-ODE based models to learn the relationship between
exposure and response from data [73]. Novel interpretable methods
have also been described to infer such physical relationships from
data [74]. However, in many cases such a direct relationship offers
an overly simplistic representation of the biological situation. Alter-
natively, we can explicitly define part of the ODE system and use
neural-ODE to estimate unknown components [75]. This allows the
user to explicitly include reasonably certain model components (e.g.,
drug-specific properties), while neural-ODEs estimates more the more
variable and complicated biological system-specific properties from
data. It might be of interest to compare such approaches to classical
PK/PD approaches.

Novel approaches have also aimed at improving the estimation of
biological system-based effects, for example by extrapolating from cell-
line data or animal models [76–78]. These approaches allow for more
frequent measurement of treatment endpoints, and can be used to
estimate otherwise difficult to obtain quantities (e.g., spatial distribu-
tion of drug in the target tissue [77]). As an example, patient-derived
cancer xenograft models can be used to characterise the concentration-
dependent effect of drugs on their target based on tumour growth
data [76]. Obtaining such results from in vivo patient data would not
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only be complicated but also undesirable due to the high frequency
by with which tumour biopsies would have to be performed.

Adoption of ML algorithms in the context of exposure-response
modelling hold exciting opportunities. For example, a recent study
describes a method for predicting the drug response of thousands
of cancer cell lines based on mutations and expression profiles [79].
Another study describes a method for quantifying the individual
variability in tumour dose-response while also identifying important
biomarkers [80]. ML techniques can also be used to learn PK or
PD (e.g., drug absorption or receptor binding) parameters based on
quantitative structure-activity relationships [81]. In short, there have
already been many diverse applications of ML in this field, and we
expect them to further increase in the future.

2.4.2.2 Survival Analysis

Time-to-event analysis refers to a set of methods that aim to describe
the probability of a specified outcome occurring over time. In the
case where only a single event is possible per individual (i.e., survival
analysis), non-parametric methods such as the Kaplan-Meijer estima-
tor are used to estimate the distribution describing the proportion of
individuals who have ’survived’ over time. These methods allow for
the statistical comparison of the efficacy of two competing treatment
modalities. Often, we are also interested how covariates affect this
efficacy. The standard method for estimating of such effects is the
Cox proportional hazard model. Here, the covariates are assumed to
affect the hazard in a proportional manner. However, this assumption
might be too limiting for a flexible analysis of high-dimensional data,
complex time-dependent effects, or multi-state survival models. One
might instead turn to ML for learning the effect of covariates or the un-
derlying model structure. As we have mentioned, the random survival
forest model has been proposed for performing non-linear analysis of
covariates. The random survival forest was suggested to obtain either
similar or lower error compared to Cox proportional hazard models
[8]. Recently, deep learning approaches have also been proposed for
survival analysis [82, 83]. These were generally suggested to obtained
higher accuracy (in terms of concordance index) when compared to
Cox models and survival forests on several clinical data sets. In ad-
dition, these approaches allow for the calculation of the individual
risk of prescribing a certain treatment [82]. In Cox models, this risk is
constant unless treatment interaction effects are explicitly included,
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which can be complicated. The neural network-based approach pro-
duced treatment recommendations that led to a higher rate of survival
compared to random survival forests [82].

Recurrent neural networks have been suggested as a method for
estimation of the effect of time-dependent covariates. These meth-
ods were again found to outperform previous methods (including
neural networks) in terms of concordance index [84, 85]. By predict-
ing the individual risk based on current and previous information
at discrete time intervals, these methods might improve learning of
time-dependent effects.

Multi-state models step away from the usual alive-death dichotomy
and instead specify disease progression into intermediary (non-fatal)
or competing states [86]. In oncology for example, this allows for the
categorisation into induction, relapse, remission, and deceased states.
This allows for prediction of the risk of relapse following complete
remission or survival in the case of relapse [87]. Specification of the
dynamics between different states and the influence of covariates
might require strong assumptions. A generalise approach used neural-
ODE to learn the likelihood of being in each state over time [88].
This approach obtained improved performance over multi-state Cox
models in a competing risk setting.

2.4.2.3 Considerations

There are many interesting avenues exploring novel applications of ML
in exposure-response modelling. The onset of Big Data has resulted
in many opportunities for using more advanced and computation-
ally efficient methods for analysing these data. However, some of
these tools might still remain at the fringe due to their complexity.
Domain-specific reviews providing an overview of recently developed
algorithms might help to provide guidelines for optimal strategies for
analysis and validation [81]. Without the availability of model code or
comprehensive tutorials on the use of complex ML models, adoption
of these methods will likely remain limited.

An important consideration for the use of ML for survival analysis
is whether the current data set supports such analyses. Small data
sets or those without frequent measurements of the covariates over
time might lack the power to correctly describe non-linear effects. As a
result, we would recommend evaluating multiple different models for
the task at hand. For example, for some data sets, Cox models either
performed equal to or better than neural network-based approaches



2.5 model validation 51

[85]. This could be the case in smaller data sets, or when the data does
not support more complex models. In such scenarios, Cox models
might be preferred due to their improved interpretability. One might
also prefer Cox models when model interpretation is of the highest
importance.

2.5 model validation

2.5.1 Choosing a Validation Strategy

An essential component of any analysis using ML is a model vali-
dation strategy. Arguably, performing model validation is also more
generally advisable in the context of pharmacometrics. In contrast
to conventional statistical methods however, ML algorithms such as
neural networks are extremely flexible. Even neural networks with a
single hidden layer are considered to be universal function approxima-
tors, meaning that they can fit any data arbitrarily well [89, 90]. This
flexibility results in a high risk of “overfitting”, a phenomenon where
the resulting model is completely tailored to the current data set such
that it generalises poorly. It is thus important to validate the general-
isability of a ML model before it can be used in practice. Arguably
the best validation method is to determine the predictive accuracy on
independent data sets. Unfortunately, data are often limited. In this
section, we report on alternatives for performing model validation.

2.5.1.1 Options for Estimating Model Generalisability

In the most simple case the data set is divided in a “train” and “test”
set. The train set is used to fit the model, whereas the test set is used
to estimate the accuracy of the model. In ML, usually a split using
roughly 70–80% of data for training and 20–30% as test data is advised.
This is however largely dependent on the size of the test set as it should
contain a representative number of samples. Some ML models have
additional parameters (i.e., hyperparameters) that can be tuned in
order to affect performance. When performing such optimization, the
data set should be split in three parts: a train set (for fitting the model),
a “validation” set (for determination of the performance of the current
hyperparameters), and a test set (for determination of the accuracy of
the final model). A similar approach is be advisable when performing
covariate selection.
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Performing a single random split of the data set can be a poor
estimate of model generalisability. For this reason, the accuracy is often
evaluated on multiple train/test splits and their results are pooled. We
will discuss three such techniques for estimating the generalisation
error: random sub-sampling without replacement, bootstrapping (sub-
sampling with replacement), and k-fold cross validation. A schematic
overview of the three methods is provided in figure 2.3.

Figure 2.3: Examples of methods for estimation of model generali-
sation accuracy. Schematic overview of three common validation
strategies: k-fold cross validation, random sub-sampling, and bootstrap-
ping (with replacement). The white shapes denote the training data,
whereas grey shapes denote testing data. Here, e represents the total
number of experiments to run.

In random sub-sampling without replacement (also known as
Monte Carlo cross validation), the model is fit to a random split
of the data set multiple times, model accuracy is evaluated on the
corresponding test sets, and the results are pooled. Since we are sam-
pling without replacement, each sample occurs only once in either the
training or test set. Crucially, one should understand that this leads to
biased estimates of the true population mean and its standard error.
This is because the samples in each split are not independent, and thus
violate the Central Limit Theorem. Optionally, one can use the finite
population correction factor to improve estimates. However, since the
choice of validation strategy is independent of experimental design,
possible problems can simply be avoided by performing a bootstrap
instead.

In bootstrapping, samples are taken with replacement, resulting in
independent samples. Usually n (size of the original data set) samples
are taken, and the samples that are not in the training set are used
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as the test set. Again the results are pooled for a large number of
replicates. This estimate can be reliable when all the models converge,
which is often not a problem in ML.

Finally, in k-fold cross validation, the data are partitioned into k folds,
or subsets, and the model is trained on k− 1 folds. The remaining fold
is used to estimate test accuracy. Models are fit iteratively so that each
fold is used for testing once. k-fold cross validation is also frequently
performed in the context of hyperparameter optimization.

2.5.1.2 Considerations

In general, drawing a consensus on the best method for estimat-
ing model generalisability is difficult. A downside of random sub-
sampling and bootstrapping is the large computational cost associated
with fitting a large number of models. In addition, when sampling
with replacement, the number of unique samples in the training set is
reduced, which may lead to higher bias of predictions in smaller data
sets [91, 92]. A similar issue can occur when performing k-fold cross
validation with a low number of folds [92]. The other extreme, known
as leave-one-out cross validation (LOOCV; where k = n), has been
suggested to have the best bias-variance trade-off when compared to
the other methods [91, 92]. Performing ten-fold cross validation leads
to similar results compared to leave-one-out cross validation at a lower
computational cost [91, 92]. The latter is especially relevant as data
set size increases in size (as models have to be fit). Papers have also
reported on the inconsistency of LOOCV, specifically that selection of
the true data generating model does not actually improve as data set
size increases [93].

Another important consideration when estimating model general-
isability is to prevent data leakage. When multiple observations are
available per patient, a simple random split might result in different
observations of a single individual appearing in both the train and
test set. These observations should be grouped to prevent information
leakage. Care should also be taken when optimising hyperparameters.
The data that is used to test the current set of hyperparameters should
not include samples from the final test set. This means that the data set
should first be divided in a train and test set. The hyperparameters can
then be optimised by performing k-fold cross validation on data from
the train set only. The accuracy of the best model from the cross valida-
tion (containing the optimal set of hyperparameters) is then evaluated
on the test set. This entire process can also be repeated for multiple
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test sets, essentially performing an additional (outer) cross-validation.
This approach also estimates sensitivity of the hyperparameters to
random sub-sets of the data.

Another point to consider is that creating random subsets of the data
can exacerbate class imbalances. For example, an algorithm trained to
diagnose disease (classifying samples in "no disease" and "disease")
can present an inflated accuracy if the model always predicts no dis-
ease while the test set does not contain many samples from the disease
group. This can often be the case for rare diseases. Alternatively, in
case-control studies, train sets can be saturated with control patients,
resulting in a model that is unable to make accurate predictions for
the case group. In such situations, the data can be stratified so that
class proportions are roughly similar in each fold. Care should again
be taken to prevent data leakage; data should not be stratified based
on the independent variables as this results in more similar train and
test sets.

There likely is no single best method of estimating model generalis-
ability. In many cases, k-fold cross validation might be preferred when
bootstrapping encompasses a too high computational cost. When
choosing cross validation, the most important aspect is to choose a
suitable value of k. Arlot and Celisse provide an excellent survey on
model selection using cross validation [94]. Their findings may aid in
choosing the appropriate cross validation procedure on a per-problem
basis.

2.6 model interpretation

Explainable artificial intelligence has emerged as an important sub-
field of ML research. Especially with respect to the adoption of ML
for medical applications, understanding why a certain prediction is
made is crucial for instilling trust. As an example, model interpreta-
tion methods can be used to indicate regions-of-interest underlying
predictions for medical image classification [95, 96]. There are two
types of explanation methods: model-specific and model-agnostic.
Model-specific explanation methods for example involve using the
regression coefficients from linear models to explain the proportional
relationship between covariates and the dependent variable. Although
these coefficients have a straightforward meaning, they are not neces-
sarily true; correlated covariates can complicate the estimation of true
covariate effects. In more complex models, such as neural networks,
the meaning of the model parameters is not immediately obvious.
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Although neural network specific explanation methods exist [97], gen-
erally model-agnostic explanation methods are used. These methods
themselves can be considered black-box as they aim to replace the
complex model by a more simple, interpretable model.

There have been numerous suggestions for interpretation frame-
works aimed at explaining ML model output, including Local Inter-
pretable Model agnostic Explanations (LIME), Deep Learning Impor-
tant FeaTures (DeepLIFT), and SHapley Additive exPlanations (SHAP)
[97–99]. An overview of popular methods is provided by Holzinger et
al. [100]. This reference also provides short discussions of each method
which may provide intuition on what method to use for what goal.
It can be difficult to understand how the function of each of these
methods affects model interpretation. It is possible that using different
frameworks on the same model results in different explanations. It
has thus been of interest to find theoretical support for these methods.
One method that aims to offer theoretical guarantees is SHAP [99].

SHAP has already seen use in pharmacokinetic modelling. One
study used SHAP for the identification of important covariates when
using neural networks to predict cyclosporin A clearance [101]. Aside
from covariate importance, which only provides a limited interpre-
tation of the model, SHAP can also be used to visualise covariate
relationships [54]. To present an example, we performed a SHAP
analysis on the prediction of warfarin absorption rate (ka) by the pre-
vious discussed ODE-based neural network (implementation details
in Appendix 2.B.3). In figure 2.4, we depict the relationship between
age and ka, stratified by sex, as represented by SHAP values. Since
we only have a single continuous and categorical variable as input to
our neural network we can also obtain their exact functional relation-
ships. In cases when more covariates are included, this is generally
not possible. The model predicts a different effect of age on ka for
males and females (see figure 2.4). The SHAP values allow for the
evaluation if the relationships adhere to biological expectations of co-
variate effects. However, since there are only a few female patients, we
should take caution when performing such evaluations. Although the
SHAP values seem to be able to represent the effect of the covariates
well, extrapolating to unseen samples might be unreliable. Other ap-
proaches have been developed in order to estimate the uncertainty of
out-of-distribution samples [102]. The use of only a single explanation
method might thus not be enough for the complete evaluation of ML
models.
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Figure 2.4: Example of using SHAP for model interpretation. Change
in warfarin absorption rate (∆mg/h) prediction by the neural network
as estimated by SHAP values. Here, circles represent the SHAP values
calculated for men, whereas triangles represent SHAP values calculated
for female patients. Lines represent the neural network predicting when
fixing patient sex (solid for male, and dashed for female) and predicting
absorption rate based on different values for age.

2.6.1 Considerations

There are many available explanation frameworks for ML models.
Here, we have chosen to discuss only one technique to illustrate
how these methods can be used. In the case of ODE-based methods,
model-agnostic methods are useful to visualise the effect of covariates.
However, it is possible that such methods alone are not sufficient for
use in clinical practice. It might also be of interest to know if each
individual prediction can be trusted, especially when predicting for
samples that are different from training data.

Due to the large number of available explanation methods and diffi-
culties with representing their accuracy, choosing the correct method
can be a daunting task. In most cases, we can only lean on some the-
oretical guarantees or expected behaviour on simple examples [103].
Molnar et al., present an excellent overview of pitfalls of these meth-
ods and how to resolve them [104]. Since most of the model-agnostic
interpretation methods operate in a similar fashion (i.e., they perturb
data and evaluate the effect on predictions), they share similar pitfalls.
This study also makes the important suggestion that there again is no
one-size-fits-all method.
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Another great reference is the work by Yang et al. [105]. Here, the
authors first outline frequently used concepts in model interpretation,
after which they provide two showcases demonstrating how these
concepts can be applied for explaining ML model output. This study
shows how these techniques can provide insight into the strengths
and weaknesses of ML models.

2.7 main points

We have discussed several recent applications of ML algorithms in the
context of pharmacometrics. More specifically, we have presented how
ML techniques can and have been used for data imputation, dimen-
sionality reduction, unsupervised clustering, covariate selection, drug
concentration prediction, and treatment response prediction. In gen-
eral, tree-based models and neural networks were the most frequently
used algorithms for these purposes. Most papers report an improve-
ment in performance when comparing the use of these methods to
classical approaches. In addition, more complex architectures, which
were most frequently based on neural networks, were suggested to be
the most accurate. More research is however needed to compare these
methods to classical approaches, such as NLME models.

We have started our discussion with the application of ML methods
for data preparation. With respect to missing data imputation, the
literature suggests lower bias for estimated model parameters when
using multiple imputation compared to single imputation. Several
ML-based methods have been suggested for imputation of missing
data based on regression of observed covariates. It is still unclear
however if the added complexity of these methods actually leads to
improved estimation of missing data. Evaluation of such methods in
the context of the smaller data sets often seen in pharmacometrics is
thus required. We have briefly discussed methods for dimensionality
reduction. Such approaches might be interesting for facilitating the
analysis of complex genetic or proteomics data. However, their benefit
compared to using ML to detect influential covariates is not obvious.
Although the latter approach can result in the loss of information on
covariate dependencies, its results are more easily applicable.

Next, we discussed the application of ML techniques for hypothesis
generation. Studies have used unsupervised clustering techniques for
the detection of patient subgroups from data. These subgroups can
for example be used to generate hypotheses regarding differences
in treatment response between patients. ML methods have also been
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used for the detection of influential covariates. A study has suggested
that covariate importance scores produced by the random forest can
be used to obtain a better selection of covariates compared to step-wise
methods [42]. This and other methods do not yet offer a complete
alternative to step-wise methods, but are useful for producing an
initial set of hypotheses regarding important covariates to consider
for inclusion. Methods for search space optimization such as genetic
algorithms are a promising approach for improving the selection of
model components that lead to the best performance. This approach
requires the selection of a fitness function to control model complexity,
which can be difficult to choose. More research is needed for an
empirical method for selecting an appropriate fitness function.

ML models have also been used as predictive models in the context
of pharmacometrics. We make the point that ODE-based methods
outperform other methods in reliability regarding the prediction of
drug concentrations. We have showcased this point by using a simple
example of how naive methods can misinterpret drug doses when
they are passed directly as input. Next, we discuss several ML-based
methods for predicting treatment response and efficacy. Again, ODE-
based methods show potential for improving prediction reliability,
especially in the case of PK/PD modelling. There have also been
ML-based approaches for survival analysis. It is the question however
if these are appropriate for every analysis, as more complex models
might not always result in improved performance.

Finally, we have discussed model validation. Due to the flexibility
of many of the discussed methods, deciding on a suitable model
validation strategy should be an integral part of the modelling process.
The generalisation performance of the model is an important metric
for judging its appropriateness. Validation of accuracy on a high
quality external data-set is often regarded as one of the best options.
It is however not clear what is the next best alternative when such
data are not available. We would like to urge pharmacologists that
are interested in using ML to first consider whether their use case
supports the use of these tools. In our experience, we found that
imposing constraints on these models (for example based on prior
knowledge using ODEs) can help in improving performance when
data are sparse. We also want to stress the importance of evaluating
what the ML model has learned. Examples include the analysis of
the most important covariates, or performing sensitivity analysis (e.g.,
using methods such as SHAP) with respect to the model parameters.
Understanding how the model makes its predictions allows for the
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removal of any biases, and adapting model regularisation to prevent
it from making "mistakes". Examination of under-sampled regions of
the input space can provide insight into the extend to which model
predictions can be trusted. Specifically training the model on new data
from under-sampled patients will help improve generalisability in the
long run.

In the coming years, our expectation is that the number of studies
exploring the use of ML in pharmacometrics will keep increasing.
Perhaps some of the methods mentioned in this review have already
become a standard part of the pharmacometrician’s tool kit in the near
future. This could be the time for researchers interested in ML to edu-
cate themselves in ML concepts and, perhaps, to develop new model
architectures better suited to problems in the field of pharmacometrics.
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A P P E N D I X

2.a machine learning for covariate selection

2.a.1 Data

A data set of severe haemophilia A patients receiving a single dose of
50 IUkg−1 blood clotting factor VIII (FVIII) concentrate was simulated
based on a previous pharmacokinetic (PK) model [106]. Pharmacoki-
netic time profiles were based on a two compartment model with
inter-individual variation on the clearance and central volume param-
eters. Typical clearance was estimated based on patient weight (power
function) and age (linear function), whereas central volume was based
on weight only (power function). Next, we sampled values to produce
individual estimates of the clearance parameter. Patient age was sam-
pled from a Uniform(1.1, 66.0) distribution. We fit a Gaussian Process
to predict patient weight based on age. The simulated age values were
subsequently used to sample corresponding weight estimates from the
Gaussian Process. Finally, we augmented the data set with 48 noise
covariates from a standard normal distribution.

2.a.2 Models

We fit a LASSO (sklearn python package, v1.0.2 [107]), MARS (py-earth
python package, v0.1.0 [107]), random forest model (sklearn python
package, v1.0.2 [107]), and explainable gradient boosting model (inter-
pret python package, v0.2.7 [50]) to predict the individual clearance
estimates based on the augmented set of covariates. A ten-fold cross
validation was performed. The test sets were used the calculate the
accuracy of model predictions using the root mean squared error
(RMSE). MARS was the most accurate model with a mean RMSE of
65.5 ± 10.3 mL/h, compared to 67.3 ± 9.74 for LASSO, 68.3 ± 8.45 for
random forest, and 75.4 ± 16.3 for the explainable gradient boosting
model. Next, we visualised LASSO coefficients and normalised impor-
tance scores for the random forest, MARS and explainable gradient
boosting models. All four methods correctly identified the true covari-
ates as most important, while noise covariates were less influential
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(see figure 2.1A–D). For the MARS and explainable gradient boosting
model, the learned function which approximates the effect of weight
on clearance was also visualised (see figure 2.1E,F).

2.b neural network for drug concentration prediction

2.b.1 Data

A publicly available data set of 32 patients who received warfarin
was used to depict how neural networks can be used to predict
drug concentrations. The data set contained a total of 251 warfarin
concentration measurements, with a median of six measurements per
patient. Every patient was given a single dose of warfarin at t = 0 and
measurements were performed at t ∈ {0.25, 0.5, 1, 2, 4, 6, 12, 24, 48, 72,
96, 120}. Available covariates were patient weight, age, and sex.

2.b.2 Prediction of Warfarin Concentrations

The patients from the real-world warfarin data set were split into a
training (n = 22) and testing (n = 10) set. A neural network with
two hidden layers (with, 16, and 4 neurons, respectively) was fit
to predict single warfarin concentrations based on patient age, sex,
dose, and time point. The swish activation function was used for
the hidden layers. Final layer used the softplus activation function in
order to constrain output to be positive. Next, we trained an ODE-
based neural network [67], which predicts the parameters of a set of
differential equations representing a compartment model. The same
neural network architecture was used (hidden layer of 16 neurons and
output layer of 4 neurons). Real-world warfarin concentrations were
predicted based on patient age and sex. This model was trained on
the same train set and accuracy was evaluated on the test set. Naive
neural network achieved slightly lower RMSE 1.41 IUmL−1 compared
to the ODE-based neural network (1.60 IUmL−1).

The results for the same test set patient was plotted for the naive
neural network model and ODE-based model (figure 2.2). We also
artificially set the dose to zero for both models and plotted the results.
Only the ODE-based model correctly recognised that no concentration
response should be expected in this case (figure 2.2B).
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2.b.3 SHAP Analysis

We performed a SHAP analysis (ShapML Julia package, v0.3.2, Nick
Redell (Chicago, IL, USA)) on the ODE-based model to visualise co-
variate relationships with absorption rate predictions. Since our neural
network has only a single continuous covariate we could directly visu-
alise the predicted absorption rate for a range of age values for male
and female patients. These are visualised alongside the SHAP values
(figure 2.4). We can see that the SHAP values match the prediction
by the neural network. However, visualising the complete functional
relationship of patient age allows us to infer the prediction for out-of-
distribution data. In this case, the effect of age on the absorption rate
can be quite different from the observed data. This is especially true
for female patients, of whom the number of samples is low. Here we
see a sharp decrease in absorption rate for female patients aged below
25 years, which might lead to poor generalisation. However, as we
do not have any samples in this age range, we are unable to reliably
represent this effect using SHAP values.
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abstract

Pharmacometrics is a multidisciplinary field utilising mathematical models
of physiology, pharmacology, and disease to describe and quantify the in-
teractions between medication and patient. As these models become more
and more advanced, the need for advanced data analysis tools grows. Re-
cently, there has been much interest in the adoption of machine learning
(ML) algorithms. These algorithms offer strong function approximation ca-
pabilities and might reduce the time spent on model development. However,
ML tools are not yet an integral part of the pharmacometrics workflow. The
goal of this work is to discuss how ML algorithms have been applied in
four stages of the pharmacometrics pipeline: data preparation, hypothesis
generation, predictive modelling, and model validation. We will also discuss
considerations before the use of ML algorithms with respect to each topic.
We conclude by summarising applications that hold potential for adoption by
pharmacometricians.
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3.1 introduction

In population pharmacokinetic (PK) modelling, identification of the
relationship between PK parameters and covariates is important for
the explanation of inter-individual variation (IIV). The classic step-
wise method is among the most popular methods but is not without
flaws. In step-wise methods, covariate selection is determined by a
significant change in the objective function value following inclusion
or exclusion of each covariate. Due to the ordered nature of this
process, the method may suffer from bias and multiplicity issues [1–
3].

The full fixed effects model (FFEM), which is based on a full model
fit, was introduced to reduce selection bias [4]. In this method, all
covariates of interest are tested simultaneously and included if they
result in a clinically relevant change of the typical PK parameters.
Although an improvement over the step-wise method, the FFEM is
not able to solve all prior issues. In both methods, an assumption
must be made about the functional form describing the relationship
between the covariate and the PK parameters. This encourages data
dredging because various functional forms can be tested until one
satisfies the criteria for inclusion. Furthermore, true covariates may be
excluded when sub-optimal functional forms are used. In summary,
we identify a need for a covariate selection method which performs
both a full model fit, while simultaneously estimating the optimal
functional form of each covariate.

A recent study describes the use of machine learning (ML) for
performing covariate selection for PK models [5]. Here, the authors
discuss how combining ML algorithms with covariate importance
scores can be used to obtain a similar or better selection of covariates
compared to step-wise methods. Other studies further discuss using
such an approach on real-life data to obtain a set of predictive covari-
ates [6, 7]. ML algorithms might be suitable for this task as they can
learn covariate relationships directly from data. These methods might
thus reduce the issue of selecting sub-optimal functional forms when
testing covariates for inclusion. Many ML software packages pro-
vide measures of covariate importance. For tree-based methods (e.g.,
random forests[8] or gradient boosting trees [9]), examples include
counting the number of uses of each covariate, or more sophisticated
measures, such as Gini or permutation importance. Although often
found to be relatively accurate, there are situations where these mea-
sures may be biased [10]. In addition, they only provide a single score
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of importance without information about the relationship between
each covariate and model output. After obtaining a set of important
covariates, how do we now select the functional form to implement
these covariates without again resorting to step-wise methods?

SHapley Additive exPlanations (SHAP) is a promising model ex-
planation technique due to its strong theoretical base [11]. In addi-
tion to a more robust benchmark performance compared to other
approaches[12], SHAP allows for identification of the influence of spe-
cific covariates and their effect on each individual prediction. The use
of SHAP might improve upon importance scores by also allowing for
the analysis of the relationship between covariates and model output.
Its use for covariate selection has, however, not yet been explored.

In this study, we will focus on tree-based ML algorithms, as there
exists an exact method for the computation of SHAP values for these
types of models [12]. Specifically, we will use the random forest and
XGBoost algorithms [13]. Both methods create an ensemble model of
decision trees. A decision tree is an algorithm that groups observations
into bins (appropriately called leaves), which share a similar value
for the response variable. Each tree is composed of multiple layers,
where the observation is split into two leaves based on the value of
one of the covariates. In a random forest, the model prediction is
averaged over multiple independently fit trees. Each tree is fit using a
subset of the data adding stochasticity to the learning process aiming
to reduce overfitting. In gradient boosting trees (e.g., XGBoost), the
trees are built sequentially, so that additional decision trees are added
if they improve the prediction of the previous model ensemble. Each
tree is thus fit to improve the mistakes of the previous tree. The
objective function also contains a regularisation term which penalises
the addition of complex models. In contrast to the classic random
forest implementation, XGBoost supports missing values [13].

Our goal is to evaluate the value of combining ML and SHAP for
enriching ML-based covariate analysis in the context of PK models. To
this end, we will fit a random forest and XGBoost model to predict em-
pirical Bayes estimates of PK parameters and perform a SHAP analysis
on the most accurate model. As a case study, we use a retrospective
data set of patients with haemophilia A receiving clotting factor VIII
(FVIII) while undergoing surgery [14]. We explore the output of the
SHAP analysis and present how it can be used for understanding the
relationship between covariates and PK parameters.
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3.2 methods

3.2.1 Data set

We used retrospective data of 119 individuals with haemophilia A
undergoing surgery in five different haemophilia treatment centres
in the Netherlands [14]. Patients received clotting factor FVIII con-
centrate (via bolus or continuous doses) to reach target FVIII levels
as set by the Dutch National Haemophilia Consensus. This guideline
recommends the following FVIII peak levels during the perioperative
window: 0.80-1.00 IUml−1 at 0-24h, 0.50-0.80 IUml−1 at 24-120h, and
0.30-0.50 IUml−1 beyond 120h post-surgery. A total of 3350 FVIII levels
were measured during 197 surgical procedures. All FVIII levels were
measured using the one-stage clotting assay. Timing and dosage of
measurements was determined at the discretion of the treating physi-
cian. For most patients, this resulted in more frequent measurements
early in the perioperative window, and occasional measurements post-
surgery to validate if the patient still met target levels. The following
13 covariates were chosen for analysis: treatment centre (1-5), pre-
assessed surgical risk (low vs. high [15]), use of β-domain deleted
recombinant FVIII (BDD-FVIII, moroctocog alfa/Refacto AF), haemo-
philia severity (moderate vs. severe), FVIII baseline levels, blood group
(O vs. non-O), blood loss during surgery, occurrence of a bleeding
complication, body weight, body mass index (BMI), age in years, and
von Willebrand factor antigen (VWF:Ag) and activity (VWF:act) levels.
Five covariates contained missing values. Missing values were either
imputed by mean (for continuous variables) or addition of a separate
category (for categorical variables).

3.2.2 Prediction of PK parameters using machine learning

Empirical Bayes estimates of the PK parameters were obtained by
fitting a base two-compartment model to the data using NONMEM
(ICON Development Solutions, Ellicott City, MD [16]). Random effects
were only estimated for the clearance and central volume parameters
in order to improve model stability. A combined additive and propor-
tional error model was used. We fixed the residual error estimates to
σ1 = 0.08 (additive error) and σ2 = 0.17 (proportional error) to im-
prove model stability and shrinkage while matching earlier findings
[17, 18]. Random forest (Python scikit-learn package, version 0.23.2)
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and XGBoost (Python xgboost package, version 1.4.2) models were fit
to predict the empirical Bayes estimated clearance and central volume
distribution parameters independently. We fit the XGBoost models
to both the original (containing missing values) and imputed data
set. We performed a 10-fold cross-validation for the estimation of test
set error and for SHAP value calculation. Default model hyperpa-
rameters were used (see Material S1 for details). Model accuracy was
represented as the average mean absolute error (MAE) ± one SD of
PK parameter predictions on the 10 test sets. We also calculated the
root mean squared error (RMSE) of predicted FVIII levels by solving
a two-compartment model using the test set predicted PK parameters.
The empirical Bayes estimated inter-compartmental clearance and pe-
ripheral volume parameters were directly used for all patients. FVIII
level predictions were performed in the Julia programming language
(Julia Computing, Inc., version 1.6.0) using the DifferentialEquations
package (version 6.17.1) [19]. The RMSE was presented as the mean
and SD of the RMSE calculated for each individual patient.

3.2.3 SHAP analysis

A SHAP analysis (Python shap package, version 0.36.0) was performed
to explain model output. This method decomposes a model f (x) into
a simpler additive model:

f (x) = ϕ0 +
M

∑
i=1

ϕxi (3.1)

Here, the SHAP value ϕxi of covariate i ∈ M represents its direct
effect on the model prediction, whereas ϕ0 represents the typical pre-
diction. By accumulating the SHAP values for each individual, we
can visualise their relationships with each of the covariates. For each
of the 10 cross-validations, we calculated SHAP values on the corre-
sponding test set. The SHAP values were pooled and a smoothened
representation of the effect was obtained by means of locally estimated
scatterplot smoothing (LOESS; Python statsmodels package, version
0.12.2). SHAP values for missing continuous covariates were removed
from visualisations.
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3.2.4 Model code

All model code, including implementation instructions, will be made
available at https://github.com/Janssena/pkSHAP at the time of pub-
lication.

3.3 results

3.3.1 Patient characteristics and model accuracy

An overview of the patient characteristics, missing data, and the base
model parameter estimates is shown in table 3.3.1. RMSE of FVIII
level predictions by the base nonlinear mixed effects (NLME) model
was 0.23 IUml−1 ± 0.27 (SD). Accuracy of the ML models is depicted
in table 3.3.2. The MAE of PK parameter predictions by both ML
algorithms fit to the imputed data set was similar. The XGBoost model
fit to the original data set resulted in higher MAE of both clearance
(43.8 vs. 40.4 ml/h), as well as central volume predictions (893 vs. 807

ml) compared to the random forest model. In addition, the RMSE of
the resulting FVIII level predictions was higher for the XGBoost model
(0.36 vs. 0.32 IUml−1). The MAE of PK parameter predictions was
indicative of the presence of residual IIV unexplained by the current
set of covariates.

3.3.2 SHAP analysis

We present an overview of the SHAP values for the random forest
models in figure 3.3.1. This visualisation can, for example, be used
for the identification of influential covariates, as indicated by the
horizontal span of SHAP values. Alternatively, we can use feature
importance scores or the mean absolute SHAP value to rank the
covariates based on influence. We have provided a comparison of
these two scores in figure 3.A.1. Both scores seem to lead to relatively
similar results.

https://github.com/Janssena/pkSHAP
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no. of procedures

(%) or median

[min/max]

no. of missing data

(%)

Weight, kg 75.0 [5-111] 0 (0)
Age, years 39.8 [0.24-77.7] 0 (0)
BMI 24.1 [13.6-32.8] 21 (10.7)
Treatment centre 0 (0)

- One 40 (20.3)
- Two 45 (22.8)
- Three 76 (38.6)
- Four 16 (8.1)
- Five 20 (10.2)

Blood group 26 (13.2)
- Non-O 82 (41.6)
- O 80 (40.6)

FVIII concentrate 3 (1.5)
- BDD-rFVIII 28 (14.2)
- Non BDD-rFVIII 166 (84.3)

High pre-assessed surgi-
cal risk

97 (49.2) 0 (0)

Has severe haemophilia 147 (74.6) 0 (0)
Blood loss, ml 0 [0-6700] 0 (0)
Had bleeding complica-
tion

30 (15.2) 0 (0)

FVIII baseline level,
IUml−1 0.0 [0.0-0.05] 0 (0)

VWF:Ag, % 120 [25-250] 79 (40.1)
VWF:Act, % 130 [24-270] 99 (50.3)

NLME model parameters

CL, ml/h 163 [29.5-387]
V1, ml 3030 [260-9710]
Q, ml/h 56.9
V2, ml 1270

CL (%CV) 65.2
V1 (%CV) 83.5

Abbreviations: %CV = percent coefficient of variation, BDD-rFVIII = β-domain deleted
recombinant clotting factor FVIII, BMI = body mass index, CL = clearance, NLME =

nonlinear mixed effects, Q = inter-compartmental clearance, V1 = central volume, V2 =
peripheral volume, VWF:Act = von Willebrand factor activity, VWF:Ag = von

Willebrand factor antigen.

Table 3.3.1: Patient characteristics.
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random forest xgboost

xgboost

impute

MAE of CL
predictions, ml/h

40.4 ± 10.5 SD
(R2 = 0.56)

43.8 ± 10.8 SD
(R2 = 0.48)

42.4 ± 11.0 SD
(R2 = 0.50)

MAE of V1

predictions, ml
807 ± 320 SD

(R2 = 0.49)
893 ± 356 SD

(R2 = 0.37)
817 ± 308 SD

(R2 = 0.47)
RMSE of concen-
tration predic-
tions, IUml−1

0.32 ± 0.20 SD 0.36 ± 0.26 SD 0.33 ± 0.22 SD

Abbreviations: CL = clearance, MAE = mean absolute error, PK = pharmacokinetic,
RMSE = root mean squared error, SD = standard deviation, V1 = central volume.

Table 3.3.2: Accuracy of PK parameter and concentration predictions.

For both PK parameters, patient weight was the most influential
covariate. For clearance (figure 3.3.1a), treatment centre, blood group,
age, and VWF:Ag appeared to be relatively influential. For central
volume (figure 3.3.1b), BMI and use of BDD-rFVIII concentrate seem
to be the most important covariates aside from patient weight. The
remaining covariates seem to be less influential for explaining the
prediction. We can also take a look at the SHAP values for a single
individual (figure 3.3.2). Here, we can see the exact change in clearance
and central volume resulting from the inclusion of each covariate.

Our main motivation for performing the SHAP analysis was the
ability to visualise the relationship between the calculated SHAP
values and each covariate of interest. In figure 3.3.3, we present the
resulting relationships for six covariates from the clearance model
and three covariates from the central volume model. We observed
a positive relationship between body weight and clearance, which
flattened for weights above 65 kg (figure 3.3.3a). For age, we saw a
negative relationship with clearance, similar to earlier findings [17]. We
noticed that individuals with VWF:Ag levels below 100% had higher
clearance than those with higher levels (figure 3.3.3c). In addition, we
observed that patients with blood group O displayed an increased
clearance compared to non-O individuals (figure 3.3.3d). Both these
findings were in line with physiological concepts of haemostasis. Next,
we saw that the model predicts a decrease in clearance for individuals
in centre one, possibly as result of a confounder (figure 3.3.3e). Finally,
individuals who received a BDD-rFVIII concentrate displayed slightly
increased clearance compared to those who did not (figure 3.3.3f).
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Figure 3.3.1: Overview of SHAP values for random forest model. SHAP
values of the clearance (a) and central volume (b) are shown as calcu-
lated for the random forest model. The covariate value is indicated by
colour. The horizontal span of the SHAP values indicate the change in
the parameters value. The larger the span, the larger the changes in
PK parameter and thus the more important the covariate. Covariates
are ranked from most (top) to least (bottom) influential by means of
their mean absolute SHAP value. Abbreviations: BDD-rFVIII: β-domain
deleted recombinant clotting factor FVIII; BMI: body mass index; PK:
pharmacokinetic; SHAP: SHapley Additive exPlanations; VWF: von
Willebrand factor.

For central volume, we also noted a positive relationship with
body weight, which flattened slightly with increasing body weight
(figure 3.3.3g). We saw a sharp decrease in the SHAP values for
central volume for individuals with a BMI 25 (i.e., those classified as
overweight; figure 3.3.3h). Finally, we saw an increase in the SHAP
values for individuals who received BDD-rFVIII concentrate (figure
3.3.3i).

We could further push the analysis by examining the combined
effects of multiple covariates (figure 3.3.4). Because body weight, BMI,
and age were correlated, the true effect of either covariate might have
been obscured by the others. We combined their respective SHAP
values to determine if there was a unique effect of including the
separate covariates. After this intervention, there were only small
differences between the SHAP values of weight alone versus those
of weight and BMI combined for clearance. The same was true for
the combined SHAP values of weight and age for central volume.
However, combining the SHAP values of weight and age for clearance
showed that part of its variance could be well explained by age for
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Figure 3.3.2: SHAP values for a typical patient. SHAP values are shown for
the clearance (a) and central volume (b) predictions by the random for-
est. Data is shown for a 70 kg, 63 year-old individual with blood group
non-O. SHAP value for each covariate is shown in the corresponding
bar. Vertical dashed line indicates expected SHAP value. The SHAP
values sum up to the final model prediction. Abbreviations: BDD-FVIII:
β-domain deleted clotting factor FVIII; BMI: body mass index; SHAP:
SHapley Additive exPlanations; VWF: von Willebrand factor.

individuals with a body weight above 65 kg (figure 3.3.4a). Combining
the SHAP values of weight and BMI for central volume resulted in a
more pronounced flattening of SHAP values for individuals with a
body weight above 65 kg, although considerable variance remained
(comparing figures 3.3.3g and 3.3.4b). Earlier, we identified a difference
in the SHAP values of clearance for patients receiving treatment in
centre one. The SHAP analysis suggests that individuals without blood
group O had SHAP values closer to zero compared to individuals
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Figure 3.3.3: Relationship between covariates and PK parameters
based on SHAP values. Here we visualise the relationship be-
tween PK parameter and covariate by plotting SHAP value against
covariate value. Points represents the SHAP values, while lines indicate
the LOESS fitted smooth representation of the relationship. For the
categorical covariates the SHAP value density is also shown by means
of a violin plot. We have shown the results for the most important
covariates for clearance (a–f) and central volume (g–i). Abbreviations:
BMI: body mass index; LOESS: locally estimated scatterplot smoothing;
PK: pharmacokinetic; SHAP: SHapley Additive exPlanations; VWF: von
Willebrand factor.

with blood group O (figure 3.3.4c). No such effect is seen for the other
centres. For the SHAP values of blood group for clearance, we see
a similar result. Here, individuals with lower body weight (65 kg)
seem to have SHAP values closer to zero than those with higher body
weight (figure 3.3.4d).

A classical approach to obtain intuition on what functional forms
to use would be to plot the empirical Bayes estimates of the PK
parameters against each of the covariates. This visualisation in shown
in figure 3.A.2. Here, we see that for highly correlated covariates (i.e.,
weight), it is possible to derive some intuition on the functional form
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Figure 3.3.4: Interaction between SHAP values of the covariates. SHAP
values of interactions between covariates are shown for the clearance (a,
c, and d) and central volume (b) models. Points represents the SHAP
values, while lines indicate the LOESS fitted smooth representation
of the relationship. The value of the interacting covariate is indicated
by colour. For the categorical covariates the SHAP value density is
also shown by means of a violin plot. Abbreviations: BMI: body mass
index; LOESS: locally estimated scatterplot smoothing; SHAP: SHapley
Additive exPlanations.

to use, but for most covariates their effect is difficult to discern. This is
because we are unable to visualise the contribution of each covariate
in isolation. Because unexplained residual variance is also present in
the PK parameters, choosing a function to use can be more difficult
due to large variation. This can mean that we have to iteratively select
functions to implement covariates, reproduce the visualisations, and
re-evaluate, thus again resorting to a step-wise approach. With SHAP,
we can decide on appropriate functions based on a single full model
fit.

Although not shown, the functional forms of the covariates as
described by the SHAP values of the two XGBoost models were very
similar to those from the random forest. This suggested that the choice
between a random forest and XGBoost had only minor effects on the
subsequent SHAP analysis.
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3.4 discussion

In this study, we aimed to enrich ML-based covariate selection meth-
ods using SHAP in order to infer the optimal function form to use
when including covariates in PK models. We fit both a random forest
and XGBoost model to predict empirical Bayes estimated PK parame-
ters originating from a base NLME model. The random forest resulted
in slightly more accurate PK parameter predictions compared to the
XGBoost models. Next, influential covariates can, for example, be
selected using importance scores [5]. Finally, after performing a SHAP
analysis, we are able to examine the relationship between each covari-
ate and the PK parameters in greater detail. The SHAP analysis also
allowed us to explore more complex interaction effects of covariates
resulting from the sequential binning in tree-based methods. Because
SHAP values depict the absolute change in output value, the user
can intuitively determine clinical relevance. These features display the
benefit of SHAP values compared to using importance measures in
isolation, where often only a single score of importance is obtained.

The SHAP analysis identified covariates that have previously been
associated with the PK of FVIII concentrates. In addition, the sug-
gested relationships of the covariates are similar to their implementa-
tion in previous PK models [17, 20, 21]. First, we found that patient
weight was the most important covariate to explain IIV for both clear-
ance and central volume. The concept of allometric scaling is often
applied to the relationship between weight and FVIII clearance. This
is mirrored in the flattening of the SHAP values as weight increases
(figure 3.3.3a,g). As the central volume compartment represents the
blood plasma, a relationship resembling a linear interaction with
weight might be expected. An obvious exception exists for overweight
individuals, which is represented by the SHAP values in the sharp
decline in SHAP values seen for individuals with a BMI greater than
25 (figure 3.3.3h). Measures of fat-free mass have been suggested to
better predict central volume, which could remove the need to model
the effect of BMI [22].

Next, we saw a negative interaction between age and clearance. This
effect has been demonstrated before, 16 and there might be multiple
possible explanations for this effect. One such explanation is the
finding that several blood coagulation factors, including VWF, increase
with age [23, 24]. It is well known that VWF binds to FVIII to protect
it from degradation in the blood circulation. Similar to this effect,
SHAP values for patients with blood group O depicted increased
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FVIII clearance, an effect likely linked to lower VWF:Ag levels seen in
patients with blood group O [25]. Looking at the interaction between
blood group and weight (figure 3.3.4d), we see that individuals below
65 kg (i.e., usually younger individuals) with blood group non-O
have relatively higher clearance than heavier individuals. This might
also be linked to the previously observed increase in VWF:Ag levels
with age [23, 24]. It is possible that weight was used by the random
forest as a proxy for age. Higher VWF:Ag levels were also directly
associated with a decrease in FVIII clearance by the model (figure
3.3.3c). However, considering the large fraction of missing data (40.1%),
a low number of patients at the extremes of VWF levels, and the fact
that the measurements were outdated (i.e., not measured during the
surgical procedure) there remains uncertainty about the observed
relationship between VWF:Ag and clearance. Interpreting the effects
of covariates with large fractions of missing data should be handled
with care.

The SHAP values indicate that individuals from centre one had
lower clearance compared to other centres. One possible explanation is
the use of different assay reagents in this centre. The results, however,
also indicate that this effect is correlated with the patient blood group
(figure 3.3.4c). There could thus be some other factor influencing this
effect. Because we worked with retrospective data, it is difficult to
underpin the origin of this effect.

Finally, we notice an increase in clearance and central volume asso-
ciated with patients who received BDD-rFVIII concentrate. It is well
known that use of BDD-rFVIII leads to a underestimation of FVIII
activity levels when using the one-stage assay versus the chromogenic
assay [26, 27]. By changing the phospholipid source in the one-stage
assay, similar FVIII activity levels compared to the chromogenic assay
are measured. This suggests that this effect is not due to increased
clearance or distribution volume of BDD-rFVIII [27]. It is possible that
this effect leaked into the PK parameter estimates (instead of being
part of the estimated error) by the base NLME model. Most of its effect
was on increasing the central volume estimate. This can be expected
as it would lead to a decrease in predicted FVIII levels.

From the previous discussions, we see the possibility of identifying
many subtle effects captured by the random forest model using SHAP.
However, the method also has limitations. First, the quality of the em-
pirical Bayes estimated PK parameters is an important factor affecting
the accuracy of the ML model and quality of the SHAP analysis. In
our case, this required fixing the residual error parameters and only
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including random effects on clearance and central volume. It might
not be clear in advance what measures need to be taken to obtain reli-
able results. Inspecting the distribution of the resulting PK parameters
and comparing these to prior results can be a way to decide on an
effective strategy in obtain good quality PK parameter estimates.

Next, we used LOESS to obtain an average representation of the
relationship between the covariates and PK parameters. Although this
may be helpful for the identification of effects, it might also bias the
user to find relationships that do not exist. The method might falsely
represent the true effect when SHAP values have high variance or
when data are sparse.

Another possible issue lies in the inclusion of covariates that dis-
played substantial fractions of missing values. For example, roughly
40% of VWF:Ag levels were missing. Although its relationship with
clearance suggested by the SHAP values matches previous biological
understanding, we might not want to include the covariate based on
the current analysis alone. Previous studies have, however, included
this covariate using a function matching the SHAP values [20, 21].

A more general issue with the application of SHAP values in the
context of PK models is that it results in an additive breakdown of the
model. Often, covariate effects in PK models are instead implemented
as a product of functions. This makes it difficult to compare the
outcomes of SHAP analyses with classic methods of covariate analysis,
such as forest plots obtained from an FFEM. In addition, by using
products, we can prevent the PK parameters from becoming negative.
However, because the relationships of the covariates suggested by the
SHAP values match those used in previous PK studies, we assume
that the functional forms might hold (up to a difference in parameters)
[14, 17, 18]. Such an assumption will have to be validated.

Finally, although SHAP might be able to explain the covariate
relationships in the ML model, this does not mean that the results are
biologically interpretable. ML algorithms remain black box models,
simply deconstructing the model in components does not guarantee
that the results are humanly interpretable. For example, we found an
effect of centre one on clearance, which was correlated with patient
blood group. With the current data we are unable to provide an
explanation of this effect. Consequently, not every effect found by the
SHAP analysis should necessarily be included in PK models.

In summary, we show that combining ML and SHAP allows for an
in-depth review of the relationships between covariates and PK param-
eters. We have mainly focused on using SHAP values for visualising
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covariate relationships in ML models. SHAP values can also be used
to perform covariate selection. Its benefit over importance scores will
have to be evaluated. Covariate selection is a difficult issue, and our
method is one of the first to allow one to infer the optimal function
form to include covariates based on ML algorithms. The method can
prove useful for covariate analysis and hypothesis generation.
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A P P E N D I X

3.a supplementary figures

Figure 3.A.1: Covariate importance scores for the random forest model.
Permutation importance (white) and mean absolute SHAP value
(black) scores for the clearance (A) and central volume (B) random
forest models. The fraction of the total score is shown. Error bars for
the permutation importance scores indicate the standard deviation of
the importance scores from the ten models fit during cross validation.
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Figure 3.A.2: Correlation between covariates and PK parameter esti-
mates. Here the correlation between empirical Bayes estimates of
the PK parameter and covariate values are shown. Points represents
the PK parameter predictions, while lines indicate the LOESS fitted
smooth representation of the relationship. For the categorical covari-
ates the density is also shown by means of a violin plot. We again
show the results for the most important covariates for clearance (A-F)
and central volume (G-I).



3 .b default hyper-parameters 93

3.b default hyper-parameters for random forest and

xgboost models

Below we list the most important hyper-parameters (e.g. excluding
those not influencing model performance such as logging etc.) of the
random forest and XGBoost model. Hyper-parameter descriptions
were directly obtained from the sci-kit learn documentation (https://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.R

andomForestRegressor.html) and the XGBoost documentation (https:
//xgboost.readthedocs.io/en/stable/parameter.html).

3.b.1 Random forest model

n_estimators = 100: The number of trees in the forest.

max_depth = None: The maximum depth of the tree. If None, then
nodes are expanded until all leaves are pure or until all leaves
contain less than min_samples_split samples.

min_samples_split = 2: The minimum number of samples required
to split an internal node.

min_samples_leaf = 1: The minimum number of samples required to
be at a leaf node. A split point at any depth will only be consid-
ered if it leaves at least min_samples_leaf training samples in
each of the left and right branches.

min_weight_fraction_leaf = 0.0: The minimum weighted fraction of
the sum total of weights (of all the input samples) required to be
at a leaf node. Samples have equal weight when sample_weight
is not provided.

max_features = "auto": The number of features to consider when look-
ing for the best split. If "auto", then max_features = n_features.

max_leaf_nodes = None: Grow trees with max_leaf_nodes in best-
first fashion. Best nodes are defined as relative reduction in
impurity. If None then unlimited number of leaf nodes.

min_impurity_decrease = 0.0: A node will be split if this split induces
a decrease of the impurity greater than or equal to this value.

bootstrap = true: Whether bootstrap samples are used when building
trees. If False, the whole data set is used to build each tree.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
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max_samples = None: If bootstrap is True, the number of samples
to draw from X to train each base estimator. If None (default),
then draw X.shape[0] samples.

ccp_alpha = 0.0: Complexity parameter used for Minimal Cost-
Complexity Pruning. The sub-tree with the largest cost com-
plexity that is smaller than ccp_alpha will be chosen. By default,
no pruning is performed.

3.b.2 XGBoost model

booster = “gbtree”: Which booster to use. Can be gbtree, gblinear or
dart; gbtree and dart use tree based models while gblinear uses
linear functions.

eta = 0.3: Step size shrinkage used in update to prevents overfitting.
After each boosting step, we can directly get the weights of
new features, and eta shrinks the feature weights to make the
boosting process more conservative.

gamma = 0: Minimum loss reduction required to make a further
partition on a leaf node of the tree. The larger gamma is, the
more conservative the algorithm will be.

max_depth = 6: Maximum depth of a tree. Increasing this value will
make the model more complex and more likely to overfit. 0 is
only accepted in lossguide growing policy when tree_method is
set as hist or gpu_hist and it indicates no limit on depth. Beware
that XGBoost aggressively consumes memory when training a
deep tree.

min_child_weight = 1: Minimum sum of instance weight (hessian)
needed in a child. If the tree partition step results in a leaf node
with the sum of instance weight less than min_child_weight,
then the building process will give up further partitioning. In
linear regression task, this simply corresponds to minimum
number of instances needed to be in each node. The larger
min_child_weight is, the more conservative the algorithm will
be.

max_delta_step = 0: Maximum delta step we allow each leaf output
to be. If the value is set to 0, it means there is no constraint.
If it is set to a positive value, it can help making the update
step more conservative. Usually this parameter is not needed,
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but it might help in logistic regression when class is extremely
imbalanced. Set it to value of 1-10 might help control the update.

subsample = 1: Subsample ratio of the training instances. Setting
it to 0.5 means that XGBoost would randomly sample half of
the training data prior to growing trees. and this will prevent
overfitting. Sub-sampling will occur once in every boosting
iteration.

colsample_bytree, colsample_bylevel, colsample_bynode = 1: This
is a family of parameters for sub-sampling of columns. All col-
sample_by* parameters have a range of (0, 1], the default value
of 1, and specify the fraction of columns to be sub sampled.

colsample_bytree is the subsample ratio of columns when construct-
ing each tree. Sub-sampling occurs once for every tree con-
structed.

colsample_bylevel is the subsample ratio of columns for each level.
Sub-sampling occurs once for every new depth level reached in
a tree. Columns are subsample from the set of columns chosen
for the current tree.

colsample_bynode is the subsample ratio of columns for each node
(split). Sub-sampling occurs once every time a new split is
evaluated. Columns are subsample from the set of columns
chosen for the current level.

lambda = 1: L2 regularisation term on weights. Increasing this value
will make model more conservative.

alpha = 0: L1 regularisation term on weights. Increasing this value
will make model more conservative.

tree_method = "auto": The tree construction algorithm used in XG-
Boost. Choices: auto, exact, approx, hist, gpu_hist, this is a
combination of commonly used updaters. For other updaters
like refresh, set the parameter updater directly.

"auto": Use heuristic to choose the fastest method. For small data set,
exact greedy (exact) will be used. For larger data set, approxi-
mate algorithm (approx) will be chosen. It’s recommended to
try hist and gpu_hist for higher performance with large data
set. (gpu_hist) has support for external memory.
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scale_pos_weight = 1: Control the balance of positive and negative
weights, useful for unbalanced classes. A typical value to con-
sider: sum(negative instances) / sum(positive instances).

num_parallel_tree = 1: Number of parallel trees constructed during
each iteration. This option is used to support boosted random
forest.

objective = “reg:squarederror”: reg:squarederror: regression with
squared loss.

base_score = 0.5: The initial prediction score of all instances, global
bias
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abstract

Nonlinear mixed effect (NLME) models are the gold standard for the analysis
of patient response following drug exposure. However, these types of models
are complex and time-consuming to develop. There is great interest in the
adoption of machine-learning methods, but most implementations cannot
be reliably extrapolated to treatment strategies outside of the training data.
In order to solve this problem, we propose the deep compartment model
(DCM), a combination of neural networks and ordinary differential equations.
Using simulated data sets of different sizes, we show that our model remains
accurate when training on small data sets. Furthermore, using a real-world
data set of patients with haemophilia A receiving factor VIII concentrate while
undergoing surgery, we show that our model more accurately predicts a priori
drug concentrations compared to a previous NLME model. In addition, we
show that our model correctly describes the changing drug concentration over
time. By adopting pharmacokinetic principles, the DCM allows for simulation
of different treatment strategies and enables therapeutic drug monitoring.
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4.1 introduction

There is much interest in the adoption of machine learning (ML) in the
field of pharmacometrics. Implementation of covariates in population
pharmacokinetic (PK) models can be very complex, and might benefit
from the automatic learning capabilities of ML algorithms. Previous
studies have examined the accuracy of such models for predicting
drug concentrations [1–3]. Although these studies report similar or
improved accuracy compared to nonlinear mixed effect (NLME) mod-
els, which are widely considered to be the gold standard in the field,
none of these models allow for practical use. For example, most of the
proposed ML models have only been trained to predict drug concen-
trations at specific timepoints. Extrapolating from these timepoints
can lead to highly inaccurate results. In addition, dosing and timing
information is often a direct input to the model, even though we are
uncertain that they will be interpreted as such. As a result, trust in the
ML algorithm is low because we do not understand the translation
from covariates to drug concentrations. A simple way to overcome
these issues is to constrain the solution space to satisfy knowledge
about drug dynamics. This involves using an ML model to predict the
latent parameters z of another function, such as the one compartment
model:

C(t, D) =
D
Vd
· exp(−ket), z ∈ {Vd, ke} (4.1)

Here, the elimination rate constant (ke) and the distribution volume
(Vd) of the drug are estimated by an ML model, whereas dose D and
time since dose t can be supplied directly to C(t, D). If the drug is
eliminated at a constant concentration-dependent rate, we can thus
reliably extrapolate to different timepoints or doses. Unfortunately,
for most drugs, this assumption does not hold, and as soon as the
complexity of the compartment model or dosing schedule increases,
no simple closed form solution exists.

A recent paper by Chen et al. reports on an automatic differentia-
tion method for calculating the gradient of an ordinary differential
equation (ODE) solution with respect to its inputs [4]. This means that
methods relying on automatic differentiation for gradient calculations,
such as neural networks, can be constrained based on ODEs. Because
we can represent any compartment model using a system of ODEs,
this opens the door for a reliable use of ML algorithms in the field of
pharmacometrics. In addition, interventions (such as drug doses) can
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be defined to perturb the ODE system at specific timepoints, allow-
ing for the differentiation of the solution with respect to individual
treatment schedules.

In this study, we present the deep compartment model (DCM). In
a DCM, a neural network is used to predict the latent parameters
of a system of ODEs representing a compartment model. This tech-
nique allows for a full model-based approach which automatically
implements covariates in PK models. We will test the accuracy of
this model for predicting drug concentrations using simulated data
sets of different sizes. In addition, we will compare its accuracy to
an NLME model on real-world data of patients with haemophilia A
receiving standard half-life (SHL) factor VIII (FVIII) concentrate while
undergoing surgery. Both models will be fit on a retrospective data
set, and will be validated on data collected during the OPTI-CLOT
randomised controlled trial [5, 6].

4.1.1 Related work

Brier et al. discussed a comparison of steady-state peak and trough
gentamicin concentrations predictions made by a neural network and
NLME model [1]. The neural network predicted peak gentamicin
concentrations between 2.5 and 6.0 µg/ml with lower bias compared
to the NLME model. However, when extrapolating to samples which
were outside of this range (and not in the training set) the NLME
model was more accurate. This indicated that using ML algorithms
as-is likely results in problems with respect to extrapolating to unseen
data.

Lai et al. introduce an implementation of neural networks (and
regression splines) in the likelihood function for a data-driven esti-
mation of covariate effects in population PK models [7]. The neural
network was used to directly learn the relationship between covariates
and the PK parameters of a one-compartment model. They show how
the neural network is able to accurately represent nonlinear effect of
covariates. However, the approach focuses on the use of compartmen-
tal models with a closed-form solution and is difficult to extend to
more complex models.

Finally, Lu et al. reported on the deep-learning-based approach
which utilises a NeuralODE to handle time and dose irregularities [8].
A recurrent neural network encoder is used to learn the initial state
for an ODE solver. The solver translates this state based on the current
time interval between doses into a latent variable space z. Finally,
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a decoder is used to translate samples from z to the concentration
predictions. The authors show how this approach can be used to
correctly extrapolate to treatment schedules not seen during training,
in contrast to other ML-based methods. However, a possible issue
is its inherent reliance on black box methods for estimation. It is
difficult to understand what the latent variables z represent, how the
NeuralODE produces them, and finally how the decoder relates them
to the observations.

Results from the above papers indicate how using time and dose
as direct inputs to ML models will likely lead to poor extrapolation
to samples outside of the training data. This is eloquently shown by
Lu et al., where such models still predict drug exposure even when
the given dose is set to zero [8]. In this work, neural networks are
used to predict parameters for an ODE (similar to NLME models),
which makes it easier to implement complex compartment models
and dosing schedules. The proposed architecture is relatively simple
compared to the NeuralODE [8]. The latent variables z predicted by
the neural network now represent PK parameters, which are more
interpretable and can be compared to previous results.

4.2 methods

4.2.1 Problem definition

We consider a data set of n patients with d observed covariates
xi ∈ Xn×d, i ∈ {1 . . . n}; and corresponding drug concentration mea-
surements yi ∈ Rk

+ for k measurements in time window t ∈ [0, T].
The number of measurements may differ between patients. For each
patient i, we can define a set of clinical interventions Ii, which, for ex-
ample, contains information of drug doses given at specific timepoints.
In classical PK modelling, we can represent the dynamics of this drug
using a system of ODEs A(t, z, I) with p latent parameters z ∈ R

p
+

(aptly named the PK parameters). We often assume that the informa-
tion in X is insufficient to completely describe the inter-individual
variation (IIV) in the concentration measurements, so our goal is to
predict the typical or population predicted concentrations E[yi]. The
corresponding typical PK parameters ζi for each patient are predicted
directly from the covariates using a set of functions fθ so that:

ζi = fθ(xi). (4.2)
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The algebraic form of fθ has to be specified but its parameters θ can
be estimated from data. In many cases, prior knowledge is present for
choosing an appropriate compartment model, but not fθ . As a result,
implementations of fθ can be sub-optimal, resulting in lower accuracy
of E[yi]. To combat this issue, NLME models introduce two random
variables: one describing the IIV: η ∼ N (0, Ω), and one describing the
residual variability: ϵ ∼ N (0, Σ). η is used to transform ζ to obtain a
distribution of z which describes the residual IIV in the population:

z = ζ · exp(η) (4.3)

Here, we have depicted a commonly used transformation of ζ which
results in a log normally distributed random variable z. NLME models
predict a set of parameters Θ = {θ, Ω, Σ} and produces a maximum
a posteriori estimate of η which maximises p(η | yi, Θ). A downside
of this approach is the requirement of sufficient measurements in
yi, especially when T is large. Because the a priori predicted E[yi]
can be inaccurate, we often need to generate a PK profile for new
patients. This can be perceived as an additional burden for the patient,
especially when measurements need to be taken over the span of
multiple days.

4.2.2 Deep compartment model

In order to improve the prediction of ζ we developed the DCM. Here,
a neural network ϕw with weights w is used to predict the latent
parameters of a compartment model based on Ii. Because ϕw directly
predicts ζ instead of yi, we can better interpret its output. The neural
network learns to represent ζ from a latent z in a data-driven manner.
When we assume that each concentration measurement yij is drawn
i.i.d. from a Gaussian distribution with mean µij and variance σ2 so
that yij = µij + ϵij, ϵij ∼ N (0, σ2); we can find the optimal weights w∗

by minimising the mean squared error (MSE) objective function:

w∗ = min
w
L(X) = 1

n

n

∑
i=1

(yi − A(ti, ϕw(xi), Ii))
2 (4.4)

The DCM model was developed in the Julia programming language
(Julia Computing, Inc., version 1.6.0). Dosing events in Ii were imple-
mented as time-based callbacks to the ODE solver. These callbacks
affected the rate of drug flowing into the central compartment. Conse-
quently, bolus doses were converted to short duration infusions with
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a fixed duration of 1 minute and rate D · 60 IU/h. Model covariates
were normalised between zero and one using minimum-maximum
normalisation. Two variants of the DCM were developed. The first
directly outputs ζ in the final layer, using a softplus activation func-
tion to ensure ζ ≥ 0. The second can be passed a set of initialisation
parameters ζ0. In the latter case, the final layer of ϕw has the following
form:

ln = ζ0 ⊙ (π(lL−1) + 1) (4.5)

Here, L denotes the number of layers l in ϕw, ⊙ indicates the
Hadamard product, π(·) is the CELU activation function with α < 1
[9], and 1 is a vector of ones of length p. In this case, the model learns
the deviation from ζ0 based on xi. The CELU activation function
acts as an implicit constraint to penalise the gradient of lL−1 as it
reaches 1− α, preventing ζ to be zero. The "standard" DCM can be
used in cases where measurement data is rich, whereas the DCM with
initialisation can help to improve parameter predictions when data
are sparse.

In this paper, we have used a basic neural network encoder struc-
ture in order to reduce the number of parameters in the model. The
model contained two fully connected hidden layers: the first had 64

neurons, and the second had 16 neurons. The swish activation func-
tion was used for the hidden layers [10]. The output layer contained
four neurons representing the PK parameters. No optimisation of
model architecture was performed. The ADAM optimiser was used
for updating neural network weights with a learning rate of 1e-3 [11].

All relevant code and results will be made available for public
access at https://github.com/Janssena/DeepCompartmentModels.jl
at the time of publication.

4.2.3 Simulation experiment

We simulated a data set of 500 patients based on a previously pub-
lished NLME model [5]. This model was developed using retrospective
data from 119 patients with haemophilia A treated with an SHL FVIII
concentrate perioperatively. This model predicted ζ based on patient
weight, age, blood group, and surgical risk score. A two-compartment
model with clearance (CL), central volume of distribution (V1), inter-
compartmental clearance (Q), and peripheral volume (V2) parameters
was used.

https://github.com/Janssena/DeepCompartmentModels.jl
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The goal of our simulation was to evaluate the accuracy of the DCM
in sparse and dense data scenarios. For each patient, we simulated a
single intravenous dose of 25–50 IUkg−1 (rounded to nearest multiple
of 250) of SHL FVIII concentrate at t = 0. Typical PK parameters
were calculated based on samples from covariate distributions fit to
the original data set. FVIII levels were simulated based on these PK
parameters and collected at t = 0.5h and every hour until t = 48h.
Average simulated FVIII peak level was 0.89 IUml−1 (0.43–1.31), and
average trough level at t = 48h was 0.09 IUml−1 (0.01–0.21). Gaussian
noise (σ = 0.05) was added to produce training measurements. Any
resulting negative concentrations were fixed to zero. Multiple sets
of measurements were collected to evaluate an extremely limited
(t = 24), limited (t = 8, 30), routine (t = 4, 24, 48), and extensive
(t = 0.5, 4, 12, 24, 36, and48) sampling strategy [12]. The DCM was
trained on 20, 60, or 120 patients representing data sets of low, medium,
and large size, respectively. Corresponding test sets contained the
remaining 480, 440, or 380 patients. Models were trained until MSE
stopped improving. Both a standard DCM and DCM with initialisation
were fit for all scenarios. A reasonable set of initialisation parameters
ζ0 = [150, 2500, 150, 2000] was used for CL (ml/h), V1 (ml), Q (ml/h),
and V2 (ml), respectively. Training procedure was replicated five times
to account for the influence of the random initialisation of w on the
accuracy.

Accuracy of FVIII level predictions was defined as the percentage of
predictions within a range of the "true" simulated FVIII level (without
noise) evaluated at all simulated timepoints. This target range was
set at 0.05 IUml−1 for µtrue ≥ 0.15 IUml−1, and at 0.02 IUml−1 for
µtrue < 0.15. These values represent clinically relevant differences
in the FVIII level. Because patients with levels above 0.15 IUml−1

hardly suffer from joint bleeding, we chose this as the lower limit
[13]. The 0.05 IUml−1 range represents an estimate of assay accuracy.
This range was decreased to 0.02 IUml−1 to emphasise the importance
of making accurate predictions of FVIII trough levels (e.g., < 0.15
IUml−1). A large difference in accuracy between the train and test
set was indicative of model over-fitting. The mean accuracy ± one
standard deviation (SD) was presented for each model.

Finally, speed of the algorithm was evaluated by determining the
calculation time per epoch. We calculated the gradient and updated the
parameter for 100 epochs, recorded the total duration, and presented
the average time spend per epoch. We used a 16 GB, Intel Core i7-
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9750H CPU computer for our tests. Models were trained on the CPU
only.

4.2.4 Validation using real-world data sets

Following the simulation experiment, we compared the accuracy of
a priori predicted perioperative FVIII levels of a DCM and NLME
model using real-world data. Both models were developed on the
retrospective data set from Hazendonk et al. [5]. Data from the OPTI-
CLOT trial was used as an independent validation data set [6]. In
this study, perioperative FVIII consumption was compared between
PK-guided and standard dosing regimens. FVIII levels were actively
monitored and dosing was adjusted following daily measurements if
required.

The one-stage assay used in both data sets was known to signifi-
cantly under-report FVIII levels from a β-domain deleted recombinant
FVIII product (BDD-rFVIII; moroctocog alfa/ReFacto AF) [14]. The
proposed DCM architecture did not support estimation of the effect of
covariates that influence the drug concentration directly. We removed
all patients who received this product (9 and 4 patients in the train and
validation set, respectively). The final retrospective data set contained
110 patients with a total of 1380 perioperative FVIII measurements,
and the validation set contained 62 patients with 526 measurements.
Re-estimating the NLME model parameters on the retrospective data
without these patients did not lead to meaningful differences so the
final model was used as-is.

We fit a DCM based on patient weight, age, and having blood
group O using a two-compartment model as these covariates have
generally accepted biological significance with respect to FVIII drug
dynamics. We used the same ζ0 as in the simulation study. Additional
covariates shared between the two data sets were von Willebrand
factor antigen (VWF:Ag) and activity (VWF:Act) levels, haemophilia
severity, and pre-assessed surgical risk score. They were added to
the base set of covariates if inclusion improved objective function
value on the training data. This was somewhat similar to a step-wise
procedure, although we could not use p values as there were no
explicit parametric assumptions. Accuracy of the resulting models
was evaluated on the validation set. Models were trained for 100

epochs and the set of parameters w from the epoch resulting in the
highest accuracy on the retrospective data set were selected. We again
performed five replications of the training procedure, resulting in five
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independently fit models. For the NLME model, the final model from
Hazendonk et al. was implemented in NONMEM (ICON Development
Solutions, version 7.4.2) [5]. Covariates used in the NLME model were
patient weight, age, blood group, and surgical risk score. Accuracy
was again represented as the percentage of predictions within 0.05

IUml−1 of measured FVIII levels greater than or equal to 0.15 IUml−1,
and 0.02 IUml−1 for levels < 0.15.

4.3 results

4.3.1 DCM accuracy on simulated data

The accuracy of FVIII predictions by the DCM for the different scenar-
ios is shown in table 4.3.1. In general, a higher number of measure-
ments or training samples resulted in improved accuracy. However,
accuracy was higher for the standard DCM trained on limited mea-
surements compared to the routine set. Slight model over-fitting was
seen when training on 20 samples but not for the other sample sizes.
In all cases, we saw that initialisation using ζ0 increased both train
and test accuracy. When using initialisation, there was no large im-
provement in accuracy when increasing the number of measurements
from three (routine) to six (extensive). Furthermore, using initialisation
greatly improved model accuracy when only one measurement was
available (from roughly 29% to 65–75%).

In figure 4.3.1, we have depicted the mean residuals including SD
for the different sampling strategies at n = 120 or 20. For the stan-
dard DCM, we can appreciate that decreasing the number of training
samples increases variance of the residuals, whereas decreasing the
number of measurements increases bias. We also see that for all but
the extended measurements set high bias can be seen for peak concen-
tration predictions. For some scenarios, using initialisation is able to
reduce this bias.

In figure 4.3.2, we have shown predictions for a random patient for
each of the sampling strategies. Here, we can notice that an insufficient
number of measurements can allow the standard DCM to predict
unrealistic FVIII responses (figure 4.3.2d). Using initialisation, we
guide the DCM to find a solution that follows an initial belief about
the value of each of the PK parameters.

With respect to algorithm speed, we found that time spend per
epoch increased proportional to the number of samples in the train
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sampling standard dcm dcm with initialisation

strategy n train test train test

t = 0.5, 120 99.0 ± 0.21 99.1 ± 0.25 99.6 ± 0.12 99.4 ± 0.16

4, 12, 24, 60 93.3 ± 13.0 93.0 ± 12.5 98.9 ± 0.42 97.9 ± 0.18

36, 48 20 89.5 ± 1.09 84.4 ± 1.79 92.8 ± 1.76 88.7 ± 3.27

t = 4, 120 65.2 ± 8.68 65.3 ± 8.86 97.8 ± 0.33 97.8 ± 0.41

24, 48 60 60.7 ± 0.61 59.5 ± 0.62 96.0 ± 0.85 94.8 ± 0.97

20 58.2 ± 0.99 59.1 ± 0.71 96.3 ± 1.18 90.1 ± 2.00

t = 8, 120 75.9 ± 0.65 76.1 ± 1.08 90.8 ± 6.63 90.3 ± 6.19

30 60 72.4 ± 1.33 73.6 ± 1.19 81.4 ± 3.29 83.0 ± 3.08

20 66.8 ± 1.78 61.2 ± 1.41 77.7 ± 4.82 76.5 ± 2.19

t = 24 120 28.6 ± 3.69 28.9 ± 5.31 76.2 ± 2.74 76.0 ± 2.41

60 29.2 ± 1.21 29.4 ± 1.02 66.8 ± 2.23 65.2 ± 2.14

20 29.6 ± 2.68 32.2 ± 1.92 73.7 ± 1.83 72.9 ± 1.80

Abbreviations: DCM = deep compartment model.

Table 4.3.1: Accuracy of predicted FVIII levels in the simulation exper-
iment. Note: Train and test accuracy is represented as the percentage
of predictions within 0.05 IUmL−1 of true simulated factor VIII levels
≥ 0.15 and within 0.02 IUmL−1 of levels < 0.15. Time points are in hours.
n is the number of patients in the train set. Test set size is the remainder
of 500− n. Values are represented as the mean ± one SD of five replicates.

set (table 4.A.1). The type of DCM or the number of available mea-
surements did not affect computational time.

4.3.2 Comparison with NLME model using real-world data

In table 4.3.2, we show the accuracy of a priori predictions of the DCM
and NLME model using real-world data. Only adding VWF:Ag to
the base set of covariates resulted in an improvement of the objec-
tive function value. The DCM + VWF:Ag model showed improved
accuracy on the validation set compared to the NLME model (23.1%
vs. 21.6%). The base DCM had similar accuracy to the NLME model
(22.0%). Time spent on training a single replicate for 100 epochs took
∼ 25s.
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Figure 4.3.1: Bias and variance of residuals. Mean residuals on the test
set of a single replicate of the standard DCM (circles), DCM with
initialisation (diamonds), and corresponding SD (shaded areas) are
shown for the extensive (a), routine (b), limited (c), and extremely
limited (d) sampling strategies. Points were added for the purpose
of comparison. Dotted line indicates zero residual error. Images on
the left were trained on 120 patients, and images on the right on
20. Positive residuals indicate underestimation of FVIII levels while
negative residuals indicate overestimation. Abbreviations: DCM = deep
compartment model, FVIII = factor VIII.
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Figure 4.3.2: Examples of FVIII level predictions in the simulation
experiment. Here, predicted FVIII levels by a single replicate of
the standard DCM (circles) and DCM with initialisation (diamonds)
are compared. The accuracy threshold (shaded area) is also shown.
Points were added for the purpose of comparison. Results are shown
for a single patient for the extensive (a), routine (b), limited (c), and
extremely limited (d) sampling strategies. Stars represent the observed
FVIII levels. Images on the left were trained on 120 patients, and images
on the right on 20. Abbreviations: DCM = deep compartment model,
FVIII = factor VIII.
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model accuracy

NLME 21.9%
DCM 22.0 ± 0.417%
DCM + VWF:Ag 23.1 ± 1.12%

Abbreviations: DCM = deep compartment model, FVIII = factor VIII, NLME =
nonlinear mixed effect, VWF:Ag = von Willebrand factor antigen.

Table 4.3.2: Accuracy of a priori predicted FVIII levels for the inde-
pendent OPTI-CLOT data set. Note: Here we show the accuracy
of the models as the percentage of predictions within 0.05 IUmL−1 of
observed FVIII levels ≥ 0.15. For observations < 0.15 this threshold was
set at 0.02 IUmL−1. DCM accuracy is shown as the mean accuracy of five
independent runs ± SD. The DCM + VWF:Ag model included VWF:Ag
as an additional covariate. Bold text indicates the most accurate model.

In figure 4.3.3, the residuals of the NLME model and DCM are
compared per 24h from the day of surgery. The residual error of DCM
predictions suggest lower bias, as judged by the median residual
error being generally within the accuracy threshold. In contrast, the
NLME model more often underestimated FVIII levels. For all models,
variance of the residual error started decreasing after t = 72.

In figure 4.3.4, we have shown the prediction by the DCM + VWF:Ag
compared to the NLME model for six patients. Here, we see that the
DCM can accurately represent the changing FVIII levels over time
when subjected to complex dosing schemes. For some patients, the
DCM and NLME model predicted concentrations are very similar.

4.4 discussion

In this study, we present a technique for improving the performance
of ML models for predicting drug concentrations by constraining the
solution space. Here, we have used a neural network to predict the
latent parameters of a system of ODEs and determined its accuracy
in different scenarios during a simulation experiment. We show that
when using initialisation parameters, the accuracy of such an approach
is high (>80%) when training on medium-sized data sets with at least
two measurements. Next, we compared the accuracy of the DCM to
an NLME model using real-world data. The DCM displayed increased
accuracy of FVIII level predictions on an independent validation set
(23.1% ± 1.12 SD compared to 21.9% for the NLME model). Even
though many measurements were available, achieved model accuracy
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Figure 4.3.3: Box-plots of residual error of predicted perioperative
FVIII levels. Here, we show the residual error of a priori predictions
grouped per 24h for the NLME model (dark boxes), DCM (lightly
shaded boxes), and DCM with VWF:Ag (white boxes). The shaded area
indicates the 0.05 IUml−1 accuracy threshold. t = 0 corresponds to
the day of surgery. Mean prediction from the five independent DCM
runs was taken to calculate residual error. Positive residuals indicate
underestimation of FVIII levels, whereas negative residuals indicate
overestimation. Abbreviations: DCM = deep compartment model, FVIII
= factor VIII, NONMEM = nonlinear mixed-effect modelling, VWF:Ag
= von Willebrand factor antigen.

was lower compared to the simulation experiment. This is indicative
of the complexity of predicting perioperative FVIII levels, where other
(unknown) factors seem to contribute to the IIV.

In the simulation experiment, we found that the accuracy of the
standard DCM was higher for the limited sampling strategy compared
to the routine sampling strategy. This suggests that it is not only the
number of measurements but also their timing that can affects model
bias. This is reflected in figure 4.3.2b,c, where we can see that the
routine sampling strategy leads to higher bias between t = 4 and
t = 24 compared to the limited sampling strategy. For all scenarios,
we found that using initialisation parameters improved prediction
accuracy. Especially when training on smaller data sets (n = 20), bias
of residual error greatly reduced compared to a standard DCM. In
small data sets, there is likely not enough data to correctly charac-
terise the relationship between the covariates and the PK parameters.
When measurements were extremely limited, a standard DCM was
completely free to choose how to fit the single FVIII level and often
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Figure 4.3.4: Examples of a priori perioperative predicted FVIII lev-
els. DCM predictions represent the predicted FVIII levels by a single
replicate of the DCM + VWF:Ag model. Stars represent observed FVIII
levels. Both the prediction by the DCM (solid line) and the typical
prediction from the NLME model (dotted line) are shown. For some
patients, pre-surgery prophylactic doses are also shown. Abbreviations:
DCM = deep compartment model, FVIII = factor VIII, NLME = nonlin-
ear mixed-effect modelling, VWF:Ag = von Willebrand factor antigen.

degenerated to a flattened concentration curve (i.e., very low clearance;
see figure 4.3.2d). By using initialisation, we can drive the model to
follow an initial guess of compartment dynamics. However, we found
that the current ζ0 could still lead to a biased estimation of peak con-
centration predictions. Similar to choosing an informative prior in the
Bayesian setting, choosing the "correct" ζ0 can be difficult. In our case,
we noticed that the DCM could maintain accurate predictions of the
measurements while excessively adjusting V1. As no measurements
were present at early timepoints for many of the scenarios, the model
was not penalised for over or underestimating peak FVIII levels. It
is thus important to choose ζ0 carefully by, for example, monitoring
the distribution of residual errors during training and adjusting initial
estimates accordingly.

The results suggest, however, that a more rigid constraint against
extreme predictions is required. One such approach would be to in-
clude a prior belief over the PK parameters and performing maximum
a posteriori estimation. By setting a prior distribution over our param-
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eters we can penalise more extreme estimates. However, in the case
of a neural network, this prior has to be set over the weights of each
layer. Choosing a correct weight distribution that matches our prior
belief over the PK parameters is very complex, and is an area of active
research [15, 16]. Another related improvement is the use of a Bayesian
neural network [17]. Again, using a prior over the neural network
weights, we can obtain a credible interval for our parameter estimates,
similar to the standard error estimates NLME produces. This allows
us to contribute a measure of certainty to the PK parameters, and
identify patients for which the prediction is inaccurate. It might be
difficult to implement such methods relating to prior selection so other
approaches might have to be evaluated.

In the real-world experiment, the DCM trained using patient weight,
age, having blood group O, and VWF:Ag achieved higher accuracy
than the NLME model. Although this improvement was not extremely
large, fitting and adjusting a DCM is far less time-consuming. Training
the model required only roughly 25s, whereas development of NLME
models can take far longer. A downside, however, can be that the
DCM was programmed in the Julia programming language, which is
unfamiliar to many pharmacometricians. We have made our model
code publicly available and include a tutorial on how to fit a DCM
model to any NLME compatible data set using only a few lines
of code. This way, we hope to reduce the complexity of using this
new technique. New covariates can simply be added to a base set
of covariates and accuracy can be monitored during training. The
method also allows for the user to simulate new treatment strategies
by adjusting Ii. As seen in figure 4.3.4, the model accurately represents
the changing concentration over time.

We have shown examples where we use a DCM to estimate the
effect of all covariates, but it is also possible to add a layer where the
relationship between a covariate and the PK parameters is explicitly
stated. An example would be to use allometric scaling to represent
the effect of weight on the PK parameters, while having the neural
network learn the effect of the other covariates using standard layers.
The practical use of this concept will have to be evaluated.

From the above experiments some limitations of the DCM have
come to light. First, it is sometimes the case that no prior knowledge
exists for choosing an appropriate compartment model to describe
the drug concentrations. In these cases, we suggest fitting multiple
DCM models with different model structures and inspect the solu-
tion in order to resolve model misspecification. Next, the proposed
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architecture of the DCM does not support covariates that affect the
predicted concentration directly. This has resulted in the removal of
all patients in the data sets who received BDD-rFVIII. In the NLME
model, this effect can be directly estimated in the model, whereas for
the DCM estimating this quantity next to w can be difficult. The DCM
also does not quantify any form of residual variability. Use of the
MSE implicitly assumes simple additive error, where in many cases a
combined additive and proportional error model is more appropriate.
In addition, the model does also not quantify residual IIV, making the
model potentially more susceptible to over-fitting. We have performed
some prior work on combining the DCM with the extended least
squares objective function as a possible solution to these problems
[18]. We, however, found that the implementation is unstable and
requires careful tuning of training parameters. More work is required
to improve the random effect estimation when using neural networks.
Finally, although the relationships between PK parameters and co-
variates can be visualised after fitting the DCM, understanding the
relationships between covariates and PK parameters can be difficult.
ML explanation methods, such as SHAP [19], can be performed in
order to help visualise these relationships. Fact remains that neural
networks are black box models, and the discussion of trust in ML
method in the field of pharmacometrics is still in its infancy.

In conclusion, the DCM is a reliable tool for introducing ML models
in population PK analysis. The DCM can automatically learn covariate
relationships from data reducing the need for tedious covariate analy-
sis. In contrast to other ML models, the DCM is based on compartment
models allowing for the implementation of prior knowledge of drug
dynamics. In addition, the DCM can be used with any dosing scheme,
and allows for reliable extrapolation to different timepoints.
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A P P E N D I X

4.a supplementary tables

sampling strategy n

time per epoch

standard dcm

(seconds)

time per epoch dcm

with

initialisation

(seconds)

t = 0.5, 4, 12, 24, 36, 48 120 0.083 0.083

60 0.046 0.042

20 0.015 0.015

t = 24 120 0.091 0.084

60 0.043 0.042

20 0.016 0.014

Abbreviations: DCM = deep compartment model.

Table 4.A.1: Time spend per epoch in the simulation experiment. Time
per epoch (seconds) represents the average time spend on gradient
calculation and parameter update when training for 100 epochs.
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I N T E R P R E TA B L E P R E D I C T I O N O F D R U G
C O N C E N T R AT I O N S U S I N G D E E P C O M PA RT M E N T
M O D E L S

Alexander Janssen, Frank C. Bennis, Marjon H. Cnossen, and Ron A.A.
Mathôt
Journal of Pharmacokinetics and Pharmacodynamics (2024): 1-12.

abstract

Conventional pharmacokinetic (PK) models contain several useful inductive
biases guiding model convergence to more realistic predictions of drug con-
centrations. Implementing similar biases in standard neural networks can be
challenging, but might be fundamental for model robustness and predictive
performance. In this study, we build on the deep compartment model (DCM)
architecture by introducing constraints that guide the model to explore more
physiologically realistic solutions. Using a simulation study, we show that
constraints improve robustness in sparse data settings. Additionally, predicted
concentration–time curves took on more realistic shapes compared to uncon-
strained models. Next, we propose the use of multi-branch networks, where
each covariate can be connected to specific PK parameters, to reduce the
propensity of models to learn spurious effects. Another benefit of this archi-
tecture is that covariate effects are isolated, enabling model interpretability
through the visualisation of learned functions. We show that all models were
sensitive to learning false effects when trained in the presence of unimpor-
tant covariates, indicating the importance of selecting an appropriate set of
covariates to link to the PK parameters. Finally, we compared the predictive
performance of the constrained models to previous relevant population PK
models on a real-world data set of 69 haemophilia A patients. Here, con-
strained models obtained higher accuracy compared to the standard DCM,
with the multi-branch network outperforming previous PK models. We con-
clude that physiological-based constraints can improve model robustness. We
describe an interpretable architecture which aids model trust, which will be
key for the adoption of machine learning-based models in clinical practice.
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5.1 introduction

Selection of appropriate drug dosage is an important aspect under-
lying the efficacy of treatment and the prevention of drug-induced
toxicity. However, selecting optimal doses on an individual basis can
be challenging, which has historically led most to follow weight-
based dosing regimens. It has frequently been reported that these
conventional regimens can result in considerable inter-individual vari-
ability of achieved drug concentrations [1–3]. For example, in a study
of haemophilia A patients receiving factor VIII (FVIII) concentrate,
weight-based dosing (50 IU/kg) was observed to result in as high as
a tenfold variation in peak FVIII levels [1]. Such large discrepancies
could be especially concerning during surgical procedures, where
maintaining appropriate FVIII levels is thought to be important for
reducing the risk of (severe) bleeding [4]. Previous studies have shown
that personalisation of treatment based on the individual pharmacoki-
netic (PK) profile of the patient resulted in improved achievement
of target FVIII levels during the perioperative setting compared to
weight-based dosing [4].

Population PK involves the study of inter-individual differences
in drug absorption, distribution, metabolism, and elimination [5]. PK
models leverage mathematical representations of these processes to
predict in vivo drug concentrations. PK models estimate a set of latent
variables (PK parameters; which for example represent drug clearance
or volume of distribution) based on covariate data using hand-picked
closed-form expressions describing covariate effects. These estimates
are then fed into a system of differential equations—so-called compart-
ment models—which encode prior knowledge of drug distribution
[6]. Considerable time and expertise is required for the development
of population PK models, partly due to the manual selection of covari-
ates and fine-tuning of the functions describing their effect. Another
downside of the classical approach is that more complex and uncon-
ventional functions are rarely considered in favour of linear or power
functions. This might hurt the predictive performance of such meth-
ods. Finally, development of population PK models rarely involves
internal or external validation procedures, and the use of simple co-
variate effects and significance testing of model components might
mask risks of overfitting and poor generalisability.

Recently there has been increased interest in the use of machine
learning (ML) based approaches for performing PK analysis [7]. Sev-
eral methods have been suggested to screen covariates based on feature
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importance [8, 9] or to inform function selection [10, 12]. Population
PK models can also directly leverage ML methods which has the
potential to improve model accuracy while reducing time spend on
model development by for example directly learning drug kinetics
[13] or covariate implementation [14] from data. However, the design
of a reliable approach in the context of pharmacometrics is non-trivial:
drug concentration data is often sparsely and irregularly sampled,
while treatment interventions (e.g. drug administration) can be no-
tably different between individuals. Additionally, we wish to use
these models to evaluate counterfactual scenarios (evaluating differ-
ent treatment strategies) meaning that these models should reliably
extrapolate to unseen data. It might therefore be necessary to include
prior knowledge into model structure to allow for more data-efficient
learning. Most ML methods are also prone to overfitting, so it might
be difficult for physicians to place their trust in these methods with-
out some form of interpretability or prediction uncertainty [15, 16].
The European Commission’s proposed Regulation on Artificial In-
telligence also explicitly places such requirements on ML models
before they can be used for healthcare applications (AI Act recital 47,
https://www.euaiact.com/recital/47, accessed 19 December 2023). A
potential positive consequence of these requirements might be that
ML-based algorithms will be more extensively validated compared to
classical methods.

5.1.1 Inductive biases

In population PK models, three sources of inductive biases help to
improve model convergence: the structure of the compartment model,
the equations chosen to represent covariate effects, and the use of in-
formed initial estimates of model parameters. In contrast, naive neural
networks encode weak inductive biases for dealing with tabular or
time-series data. It can be shown that naive neural networks incor-
rectly handle important variables such as dose leading to incorrect
extrapolation [7]. This problem is inherent to the inclusion of dose
as a model input and is likely equally problematic in other standard
ML methods (e.g. random forests and gradient boosting) [13]. Impor-
tantly, Lu et al. have even shown how neural network architectures
specialised for time series predictions such as recurrent neural net-
works (RNNs) and long short-term memory models (LSTMs) fail to
reliably extrapolate to unseen dosing schedules [13]. These limitations
cannot be overcome without a causal use of variables such as dose,
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which potentially necessitates the use of ordinary differential equation
(ODE) based methods [11]. Neural-ODE-based approaches, where
treatment directly affects the latent state of the model at discrete time
points, indeed do correctly respond to new and complex dosing regi-
mens. These models are fully data-driven, greatly simplifying model
development. Multiple Neural-ODE-based approaches have been sug-
gested which can be used to learn unknown parts of the dynamical
system [17, 18], or augment expert models by learning latent effects
[19]. The deep compartment model (DCM) approach by [14] uses
neural networks to predict the PK parameters for a compartment
model, implementing doses as time-based events directly affecting
drug concentrations in specific compartments. This approach has the
benefit of predicting the same variables used in PK models allowing
for the comparison of results. Additionally, prior knowledge on drug
kinetics can be included through the compartment model, potentially
improving data efficiency.

Explicitly learning the dynamical system underlying observations
likely serves as a useful inductive bias to improve the reliability of
predictions. However, as drug concentration measurements are of-
ten sparse, the solution space given the data of potential models
for these ODE-based methods can still be considerably large (see
Fig. 5.1.1). As a result, unconstrained models might place similar
likelihood on many different model parametrizations (Fig. 5.1.1a). Al-
ternatively, well-specified models with physiological-based constraints
result in more concentrated posterior distributions. If these biases
are well-adjusted and informative, the resulting posterior might be
more similar to the true model. In Fig. 5.1.1b, we depict an example
of models within the solution space of unconstrained models. Some
of the models might learn potentially physiologically implausible or
unlikely concentration–time curves (dashed lines).

In this work, we introduce simple inductive biases within the deep
compartment model framework by placing domain-specific constraints
on model architecture to improve robustness. We define models as
not robust if they have a high propensity of learning spurious effects.
We investigated effects on model accuracy and stability of provid-
ing bounds for the value of the PK parameters, estimating global
values for difficult to identify parameters, and connecting covariates
to specific PK parameters. Expanding on the latter constraint, fully-
connected neural networks encode an implicit assumption that part
of the signal potentially originates from complex interactions between
the covariates. Model generalisability and robustness can potentially
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Figure 5.1.1: Schematic representation of the solution space of naive
and well-specified models. In (a), we show the solution space of
naive and well-specified models. In (b). the solution space of a model
with poor inductive biases is shown. Samples from the solution space
(dashed lines) can be physiologically unrealistic when data is sparse,
and can differ greatly with the true solution (solid line).

be improved by only linking covariates with causal effects to specific
PK parameters in sub-models. An additional benefit of this approach
is that the learned function from each sub-model can be visualised,
enabling model interpretation.

5.2 methods

5.2.1 Problem definition

Our focus is on haemophilia A, a blood clotting disorder where a
deficiency of FVIII results in elevated (spontaneous) bleeding risk.
Haemophilia A patients are treated by intravenous injection of FVIII
at regular intervals. The PK of FVIII is often described using a two-
compartmental structure, where the first compartment represents the
distribution of FVIII into the blood and the second is often thought to
represent the initial rapid clearance of FVIII or its binding to intra or
extra-vascular space [20–22]. The two-compartmental model can be
represented by the following system of partial differential equations:

dA1
dt = I

V1
+ A2 · k21 − A1(k10 + k12)

dA2
dt = A1 · k12− A2 · k21

(5.1)

Here, the rate constants k describe the flow between the compart-
ments specified in its subscript, A1 represents the concentration in the
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1st compartment (and so on), and I represents the rate of drug entering
the first compartment after drug administration. The rate constants
are functions of the PK parameters: k10 = CL

V1
, k12 = Q

V1
, k21 = Q

V2
,

with z = {CL, V1, Q, V2} referring to clearance, inter-compartmental
clearance, central distribution volume, and peripheral distribution
volume, respectively.

Consider a population of n individuals withD = (x(i), t(i), y(i))i∈[1..n],
each with irregular drug concentration measurements y(i) ∈ RK

+ sam-
pled over time horizon t(i) ∈ [0, Ti] with Ti indicating the follow-up
time for individual i. Drug concentration predictions are produced
based on the compartment model and a matrix of interventions I(i)

containing information on time of dose, dosage, and infusion rates
that affect the integrator at the specified time points:

ŷ(i)(t) = A(t; z(i), I(i)) (5.2)

In non-linear mixed effects models, individual estimates of each
of the PK parameters ζ(i) ∈ RM

+ are obtained based on covariates
x(i) ∈ RD and subject-specific random effects η(i) ∼ N (0, Ω), where
Ω is a M×M covariance matrix when random effects are included
on all PK parameters. The following implementation is frequently
observed within the pharmacometrics literature:

z(i)m = θm · exp(η(i)
m ) ·

Sm

∏
s

fs(xs; θs) (5.3)

Here, θ represent model fixed effect parameters and Sm ⊂ [1..D]
indicates the subset of covariates used to predict zm. After specifying
a model for the residual error ϵ ∼ N (0, Σ) on y(i) (e.g. additive, pro-
portional, or a combination of both), model parameters Θ = {θ, Ω, Σ}
can be optimised by maximising:

Θ̂ = argmax
Θ

L(Θ) =
N

∏
i=1

p(y(i) | Θ, η(i))p(η(i)) (5.4)

As previously mentioned, development of non-linear mixed effects
models requires considerable time and expertise, partly due to the
manual selection of covariates and the functions f to represent their
effect on z. In DCMs, the fixed effect model is learned by a neural
network ϕ with parameters w, and the covariates are used to predict
typical PK parameters ζ(i):



5.2 methods 127

ζ(i) = ϕ(x(i); w) (5.5)

And the model minimises the squared error:

ŵ = argmin
w

L(w) =
N

∑
i=1

Ki

∑
k=1

(
y(i)k − A(t(i)k ; ζ(i), I(i))

)2
(5.6)

These models are relatively unconstrained in their prediction of ζ(i),
as long as it results in low error with respect to the observations. It can
thus be the case that the model is not penalised for making extreme
predictions outside of the observed data.

5.2.2 Model constraints

We propose three simple approaches for constraining the solution
space of DCMs (Fig. 5.2.1). First, boundary conditions were imposed
on the PK parameters by using a transformed sigmoidal function fol-
lowing the output layer of the neural network (referenced as boundary
constraint; Fig. 5.2.1b). The boundaries can be set empirically based
on prior knowledge. For example, bounds for the volume of distri-
bution of drugs tightly bound to plasma proteins can be based on
the expectation that the plasma volume of a typical male is roughly
around 46-52 mL/kg [23]. Lower bounds of [0, 0.3, 0.05, 0] and upper
bounds of [0.5, 7, 0.5, 2] for respectively CL (L/h), V1 (L), Q (L/h),
and V2 (L) were used.

Figure 5.2.1: Graphical models representing the model structure of the
proposed architectures. Naive (a), boundary constraint (b), global
parameter (c), and multi-branch network (d) architectures are depicted.
Nodes represents neurons, with the coloured box representing the
hidden layer of the neural network.

Next, global parameters θ for a subset of the PK parameters were
estimated in parallel to w (referenced as global parameters constraint;
Fig. 5.2.1c). We chose to estimate θ = {Q, V2} since these parameters
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affect the early distribution of FVIII, and drug concentration measure-
ments at early time points are usually too sparse to identify covariate
effects on these parameters.

Finally, we describe a neural network architecture where each co-
variate (or specific combinations thereof) are connected to specific PK
parameters via independent sub-models, whose predictions are com-
bined using a product (referenced as the multi-branch network; Fig.
5.2.1d). This architecture is similar to a generalised additive model, us-
ing product accumulation rather than the sum of covariate effects. The
use of a product matches the standard implementation of covariates in
population PK models (Eq. 3), and facilitates the interpretation of the
clinical relevance of each covariate. For example, covariates resulting
in a maximal net change 20% of the corresponding PK parameter are
often deemed clinically insignificant in the pharmacometrics literature
[24]. An additional benefit of the approach is that the output of each
sub-model can be visualised, allowing for the interpretation of the
learned covariate effects. A schematic overview of the multi-branch
network is provided in Supplementary Fig. 5.A.1.

More details about the specific implementation of the model con-
straints can be found in Supplementary Data 5.B.

5.2.3 Synthetic experiments

5.2.3.1 Data generation

We simulated a data set of haemophilia A patients based on population
data from the American National Health and Nutrition Examination
Survey (NHANES) [25]. The weight, height, and age of 756 male
individuals without missing data were collected from the data set and
used as covariates. FVIII levels were simulated based on an existing
population PK model of an extended half-life FVIII concentrate [26].
This model was chosen as it used an estimate of the fat-free mass
(FFM) from [27] to predict FVIII clearance (CL) and central volume of
distribution (V1):

FFM =

(
0.88 + 1−0.88

1+
Age
13.4

−12.7

)
·
(

9270·Weight
6680+(216·BMI)

)
(5.7)

This allowed for the comparison of model accuracy when training
models using FFM directly as well as using its components weight,
height (as part of BMI), and age. This could give an indication of
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the accuracy at which non-linear interactions of covariates could be
learned.

The previous PK model was based on a two-compartment model,
with inter-individual variability on the CL and V1 parameters. Using
the structural equations reported by [26], typical estimates of the PK
parameters were produced. Next, samples of the random effects were
drawn to produce individual estimates of the PK parameters. Each
individual received a dose of 50 IU/kg, rounded to the nearest 250

IU. To allow for stochasticity of measurement times, samples were
taken from a multivariate normal distribution t(i) ∼ N ([4, 24, 48], σ =
[2, 5, 5]). Sampling times were truncated at t = 0.25 (i.e. 15 min after
dose) to prevent samples at negative time points or too close to the
time of dose administration. Finally, the ODE was solved based on the
individual PK parameters to simulate FVIII levels for each individual
and additive error (σ = 5.0 IU/dL) was added to create the training
data.

5.2.3.2 Evaluation of model constraints

Prediction accuracy of the proposed constraints was compared to a
naive neural network as well as the initialisation approach suggested
in [14]. In all experiments, covariates were scaled between 0 and 1

using min–max scaling. Models were trained using patient weight,
height and age, or FFM and age. A two compartment model was used.
Each neural network was trained using a single hidden layer of either
8, 32, or 128 neurons followed by the swish activation function [28]. A
softplus activation function was used in the output layer of the naive
neural network as well as in the model estimating global parameters
for Q and V2 to constrain latent variables to R+. All models were
trained for 500 epochs using the ADAM optimiser with a learning
rate of 1e-2 [29]. We found that these settings were sufficient for each
model to converge before the end of optimisation. First, prediction
accuracy and robustness of the naive, initialisation, boundary, and
global parameter models were compared. The multi-branch network
was not tested in this context due to similarities to the global parameter
model. Each model was fit to a random subset of the simulated data
of size 20, 60, or 120 to represent data sets of small, medium, and large
size, respectively. A Monte Carlo cross validation of 20 different train
and test sets was performed in order to estimate the stability of model
predictions. In addition, model training was replicated five times on
each train-test split. This resulted in a total number of 100 replicates of
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each model, which was deemed sufficient to estimate model variability
given our computational budget. Model accuracy was represented
by the root mean squared error (RMSE) of predicted FVIII levels
compared to the true, simulated concentration–time curves on the
test set. To this end, true and predicted FVIII levels were collected
at five minute intervals until t = 72h as a means to approximate the
error compared to the full concentration–time curve. Models were
compared in terms of their median RMSE over the 20 data sets and
five model replicates. Model robustness for each of the architectures
was represented by the percentage of models with RMSE greater than
150% of the median RMSE (references as divergent models).

In order to evaluate differences between using fully-connected
versus multi-branch neural networks, the data set was augmented
with two continuous and one categorical covariate without correla-
tions to the other covariates. For the continuous covariates, random
samples were drawn from Uniform(0,1) distributions, while for the
categorical covariate samples were randomly assigned to one of five
categories with equal probability. Next, three models with global Q
and V2 parameters were fit to FFM, age, and the noise covariates: (1)
a fully-connected model, (2) a multi-branch network with all covari-
ates independently connected to CL and V1, and (3) a multi-branch
network with the ground truth covariate connections as used in the
simulation (referenced as the causal model). Fully-connected models
were trained using a single hidden layer of 32 neurons. The number of
neurons in the hidden layer of each sub-model was set to 16 to ensure
that models had roughly similar number of parameters. Accuracy
was again compared using the RMSE. Results were compared with
the global parameter models trained on FFM and age from the first
experiment (models trained using 32 neurons). Covariate effects from
the multi-branch network were visualised to facilitate model interpre-
tation (See Supplementary Data 5.D for implementation details).

All model code and synthetic data will be made available at https:
//github.com/Janssena/dcm-constrained.

5.2.4 Real-world experiments

We compared the predictive performance of two previously published
population PK models [30, 31] to the DCM with or without the pro-
posed constraints and a Neural-ODE based model [13]. Data consisted
of 69 severe haemophilia A patients who received a single dose of
25–50 IU/kg standard half-life FVIII. For each patient, three measure-

https://github.com/Janssena/dcm-constrained
https://github.com/Janssena/dcm-constrained
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ments were available roughly 4, 24, and 48 h after dose. Available
covariates without missing data were patient weight, height, age, and
blood group.

The population PK model by [22] included the effect of weight
on all PK parameters, as well as the effect of age on CL. The model
implemented allometric scaling, which is very common in PK models.
We also evaluated the performance of a more recent model by [31].
Instead of using weight, this model implements the effect of FFM on
clearance and volume of distribution. An effect of patient age was also
included on clearance. Since it is well documented that patients with
blood group O have higher FVIII CL compared to non-O patients,
we also fitted models including a proportional effect of having blood
group O on CL [32].

DCMs were fit using neural networks with a single layer containing
8, 32 or 128 neurons (halved for each sub-model for the multi-branch
network). For the fully-connected network, model input was patient
weight, height, age, and BGO. Models were fit without constraints,
using boundary constraints (same as used during simulation experi-
ments), and using global parameters for Q and V2. In the multi-branch
network clearance was predicted based on patient a combination of
weight and height, age, and BGO, while estimating volume of distribu-
tion based on a combination of weight and height. Global parameters
were estimated for Q and V2 in all models.

For the NeuralODE based model we followed the general architec-
ture by Lu et al. [13]. Hyper-parameters were the number of neurons
in the encoder, NeuralODE, and decoder (8, or 32), the number of
hidden layers (1 or 2) in the NeuralODE, and the number of the latent
variables (2 or 6). Encoder and decoder consisted of a single hidden
layer. Tanh activation functions were used in the NeuralODE to im-
prove model stability. Model input was patient weight, height, age,
and BGO and values were normalised between -1 and 1. This marks
an important difference to the model by Lu et al., where part of the
drug concentration measurements were used as input to the encoder
and decoder.

5.2.5 Model training and evaluation

A ten-fold cross-validation was performed for both the non-linear
mixed effects models and DCMs. Both PK models were implemented
in the NONMEM software (ICON Development Solutions, Ellicott
City, MD) and model parameters were re-estimated on each full train
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fold. Exponents of the effects of weight on the PK parameters were not
re-estimated in the model by [22] since they follow the concept of allo-
metric scaling. The accuracy of typical predictions were reported. The
ML models were trained for 4000 epochs which was more than suffi-
cient for model convergence, and neural network weights resulting in
the lowest validation error (20% of training fold) were saved. Hyper-
parameter selection was performed by comparison of the RMSE on the
validation sets. Results for the models with lowest average validation
error were presented. The average RMSE of predictions with respect
to the test fold was reported.

5.3 results

5.3.1 Constraints improve model robustness

In the first experiment, highest model accuracy was generally obtained
when using a hidden layer size of 8 neurons (see table 5.3.1). Results
for models trained with larger hidden layer sizes can be found in
Supplementary Tables 5.A.1 and 5.A.2. All models seemed to perform
similarly well when sufficient data was available. When training on
smaller data-sets, the median RMSE and its variance increases for all
models. However, when training naive models, a relevant proportion
of models (18%) presented with a highly divergent error on the small
data set (mean RMSE 44.4 IU/dL).

In contrast, model accuracy was more stable when using model
constraints, with only two divergent models (0.33%) over all models
with global parameters (including those with larger hidden layer sizes).
Setting boundary constraints reduced the number of divergent models
compared to the previously suggested approach of initialisation, but
was less effective compared to the global parameter model (nine
divergent models overall). Looking at the naive models fit with 128

neurons, both model accuracy and robustness was negatively affected
when training at lower sample sizes (Supplementary Table 5.A.1).
Median RMSE for the naive model trained on 20 samples increased
from 14.7 to 16.5 IU/dL when changing hidden layer size from 8 to
128 neurons. In contrast, models fit using global parameters were
almost unaffected by hidden layer size in the same context (RMSE
13.9 to 14.1 IU/dL). Models trained using FFM and age resulted in
slightly more accurate predictions when trained on 20 samples, with
almost no differences in medium to large data sets. A more extensive
investigation of the effect of the constraints on model training can



5.3 results 133

median rmse ± one sd (%-age divergent)
model n=20 n=60 n=120

weight, height, age

None 14.6 ± 14 (18) 13.1 ± 1.2 (0) 12.3 ± 0.34 (0)
Initialisation 15.3 ± 21 (6) 12.9 ± 2.0 (2) 12.0 ± 0.45 (0)
Boundary 14.9 ± 2.5 (3) 12.6 ± 0.55 (0) 12.0 ± 0.45 (0)
Global parameters 13.9 ± 0.94 (0) 12.9 ± 0.44 (0) 12.3 ± 6.0 (1)

ffm , age

None 14.1 ± 10 (12) 12.8 ± 0.71 (0) 12.2 ± 0.39 (0)
Initialisation 14.2 ± 16 (6) 12.5 ± 1.2 (2) 11.9 ± 0.3 (0)
Boundary 13.8 ± 1.2 (0) 12.4 ± 0.33 (0) 11.9 ± 0.3 (0)
Global parameters 13.5 ± 0.75 (0) 12.6 ± 0.35 (0) 12.2 ± 0.38 (0)

Abbreviations: RMSE = root mean squared error, SD = standard deviation.

Table 5.3.1: Test set accuracy and divergence rate for models with a
hidden layer size of 8. Median RMSE over all replicates of model
training (5× 20 data sets) during experiment 1 is reported along with its
standard deviation.

be found in Supplementary Data 5.C. Here, we found that divergent
behaviour was specific to certain data folds, and was related to the
estimate of V2. Adding constraints to this specific parameter was
sometimes sufficient to improve models.

Next, we inspected the predicted concentration–time curves from
each model. In Fig. 5.3.1, we show the predictions for a single, rep-
resentative patient for naive (a), boundary (b), and global parameter
(c) models. Here, we see that all models accurately predict the three
observed FVIII levels. However, the naive model seems biased to pre-
dict unrealistically high FVIII peak levels (with predictions for some
patients as high as 1340 IU/dL). In contrast, the constrained models
resulted in less extreme and more similar solutions.

5.3.2 False covariates degrade model performance

We then compared the fully-connected and multi-branch networks
on the augmented data set (see Table 5.3.2). The addition of false
covariates degraded the accuracy of the fully-connected network with
global parameters when using small data sets compared to the first
experiment (RMSE of 18.1 vs. 13.3 IU/dL). We found that, initially,
the multi-branch network using all covariates depicted high error
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Figure 5.3.1: Predicted concentration–time curves from the proposed
constraints are more realistic compared to naive models.
Results are shown for the naive (a), boundary constraint (b), and global
parameter (c) model. The median prediction (black line) over the 20

data set replicates (lightly coloured lines) along with the observations
(stars) are shown for the same patient.

in several replicates (RMSE > 40 IU/dL). In these replicates, poor
initialisation resulted in initial V1 estimates close to zero, resulting in
high peak predictions as seen in Fig. 5.3.1a. To solve this issue, we
initialised the bias of the neuron connecting to V1 in the final layer of
each sub-model to 0.5, increasing initial estimates close to 1 L. The
resulting model performs slightly better at low sample sizes compared
to the fully-connected network (RMSE 15.6 vs. 18.1 IU/dL). This
suggests that part of the decrease in accuracy of the fully-connected
network might be related to the model learning spurious interactions
between the covariates.

median rmse ± one sd (%-age divergent)
model n=20 n=60 n=120

Fully-connected 18.1 ± 2.9 (2) 13.6 ± 0.52 (0) 12.7 ± 0.35 (0)
Multi-branch 15.6 ± 2.9 (1) 12.8 ± 0.48 (0) 12.1 ± 0.19 (0)
Causal 13.3 ± 1.0 (0) 12.5 ± 0.34 (0) 12.1 ± 0.25 (0)

Abbreviations: RMSE = root mean squared error, SD = standard deviation.

Table 5.3.2: Introduction of noise covariates deteriorates accuracy of
fully-connected networks. Median RMSE of the test set over all
replicates of model training (5× 20 data sets) is reported along with its
standard deviation.

By including only true effects, the causal model achieved very simi-
lar accuracy to the global parameter model from the first experiment
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at all data set sizes. In Fig. 5.3.2 we depict the learned covariate effects
for the network containing noise covariates. As the number of training
samples decreases, the variance of learned functions across replicates
seemed to increase (i.e. the functions became more diverse). When
trained on n = 20, the effect of the noise covariates on clearance was
quite substantial in some replicates. It is still possible to identify these
covariates as unimportant overall, as their mean effect over replicates
is close to 1.

Figure 5.3.2: Visualisation of learned functions from the multi-branch
network enable model interpretability. The top panel (a, b, and
c) depict the learned functions for the model trained on 120 samples,
with the bottom panel (d, e, and f) showing results on n = 20. Black
curves depict the average effect over the 100 model replicates (coloured
lines)

5.3.3 Constrained models perform better on real-world data

In Table 5.3.3, we summarise the results from the models fit to real
data. Here, we see that the addition of the effect of blood group O on
CL improved accuracy of the expert models. Addition of the covariate
resulted in a statistically significant decrease in objective function
value by more than 20 points in both models (p < 0.01; χ2 = 6.635).
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The model by [31] was more accurate on our data set than the model
from [22] (RMSE 13.7 vs 14.8 IU/dL). The addition of model con-
straints improved accuracy compared to the naive DCM, and the use
of boundary constraints and global parameters resulted in models
with relatively similar performance to the best performing NLME
model. The multi-branch network achieved the lowest RMSE overall
(13.0 IU/dL) while the Neural-ODE based model achieved the highest
RMSE (19.5 IU/dL). Similar to Fig. 5.3.1, the naive model predicted
higher FVIII peak levels, followed by an initial rapid re-distribution
of FVIII (see Supplementary Fig. 5.A.2a). The addition of model con-
straints resulted in more smooth concentration time curves. Concen-
tration time-curves produced by the Neural-ODE were unrealistic
and suggestive of model overfitting (Supplementary Figs. 5.A.2e and
5.A.3). Again, learned covariate effects in the multi-branch network
were visualised, enabling model interpretation (see Supplementary
Fig. 5.A.4).

model mean rmse (iu/dl) ± one sd

expert models

Björkman et al. [22] 15.8 ± 3.3
Björkman et al. [22] + BGO 14.8 ± 3.1
McEneny-King et al. [31] 14.7 ± 2.9
McEneny-King et al. [31] + BGO 13.7 ± 3.0

machine learning models

Neural-ODE (32 neurons, 1 hidden layer,
2 latent variables) [13]

19.5 ± 3.5

Fully-connected DCM (32 neurons) 14.8 ± 2.8
DCM + boundary (32 neurons) 14.1 ± 2.4
DCM + global parameters (32 neurons) 13.9 ± 1.8
Multi-branch network (16 neurons) 13.0 ± 2.1

Abbreviations: RMSE = root mean squared error, SD = standard deviation, BGO =
blood group O, DCM = deep compartment model.

Table 5.3.3: Comparison of model accuracy on real-world data.

5.4 discussion

In this work, we investigated how model constraints affected the pre-
dictive performance of deep compartment models [14]. Without any
constraints, models potentially learn unrealistic concentration–time
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curves when data is sparse. Although these models accurately pre-
dicted observed concentration measurements (i.e. had low training
loss), they were not penalised for making extreme predictions at
time points outside the training data. The results from the first ex-
periment indicated that roughly one-fifth of fitted models resulted
in divergent results when data was sparse (n = 20). This limits the
clinical implementation of such algorithms. Our results indicate that
the introduction of simple constraints improved model robustness as
represented by the number of divergent models. As a consequence, the
constraints could improve model accuracy when trained on smaller
data sets and resulted in more realistic concentration–time curves. The
constraints can be based on prior knowledge, making them easier to
implement in practice. Finally, the proposed multi-branch network
architecture is an interpretable alternative to fully-connected networks,
trading ease-of-implementation for increased model trust.

In the second synthetic experiment we found that the presence of
false covariates affected model accuracy. Visualisations of the learned
functions in the multi-branch network indicated that models were
sensitive to learning false effects irrespective of the size of the training
set. However, models trained on sparse data were more likely to inflate
the importance of the false covariates, resulting in higher error on
new data. This is indicative of the importance of the careful selection
of (causal) covariates to include in these models. One approach for
covariate selection can for example be the use of cross-validation
based procedures to identify covariates that can be removed based
on the uncertainty/absence of their effect across replicates. Similarly,
this approach can be used to perform an initial screening of the
covariates for downstream model analysis. This approach can both
identify covariate importance as well as their relationship to the PK
parameters. Comparing learned functions from multiple replicates
also allows for the identification of regions of covariate space that
have higher data uncertainty. For example, <2% of patients had a FFM
in the data set, which is reflected by higher uncertainty of the effect of
FFM on CL (Fig. 5.3.2a). For patients in these regions one can decide
to first collect more data before making predictions. Knowing when
to trust model predictions is important, especially in the context of
medical decision-making.

The results of the real data experiment support the findings of the
synthetic experiments. The addition of model constraints improved
model performance in terms of test set accuracy. Importantly, the
shape of the resulting concentration–time curves were again more
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realistic compared to those from unconstrained models. By under-
standing how inductive biases are encoded in conventional methods
used for PK analysis, we show that hybrid architectures can be a
promising approach for improving model performance in settings
with limited data. Fully ML-based architectures, such as the Neural-
ODE, greatly simplify model development but suffer when data is
sparse. In addition, diagnosing and resolving overfitting issues in
these models is more complicated. We show that hybrid architectures
can alleviate these issues, and can be designed in such a way that
the model is inherently interpretable. This eliminates the need for
(post-hoc) ML explainability methods such as SHAP, which do not
necessarily offer a true representation of model predictions [33]. Using
Neural-ODEs for learning parts of the mechanistic model can also
be an interesting hybrid approach [18]. In the multi-branch network,
covariates are organised into sub-models, allowing for the visuali-
sation of learned functions. Such an approach can improve model
trust while also aiding with the ability to critique the model during
development. Compared to classical population PK modelling, this
method holds great potential for reducing the complexity of model
development especially when paired with the ability to detect and
manage overfitting.

There were also some limitations to this study. First of all, in the PK
model used to generate the synthetic data, Q and V2 parameters were
fixed for all individuals. This might partly explain the higher accu-
racy of the models estimating global parameters for these variables.
However, due to data sparsity at early time-points and the addition of
noise, it is not necessarily clear in what degree this affects the results.
Regardless of potential biases during the synthetic experiments, the
estimation of global parameters also resulted in more accurate predic-
tions in the experiment using real world data. Next, we found that the
estimation of global parameters resulted in higher accuracy compared
to the use of boundaries. Inspections of model predictions showed that
estimates of Q and V2 were often stuck in flat regions of the sigmoid
during early training (Supplementary Data 5.C). Resulting gradients
shrink to zero, making it more difficult for the model to correct for
early misspecification. This approach could thus potentially be im-
proved by only placing boundaries on a subset of the PK parameters,
by combining it with the estimation of global parameters, or by using
less aggressive functions to constrain the parameters (e.g. softsign or
cdf of a Cauchy(0, 2), see Supplementary Data 5.C).
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A limitation of the proposed multi-branch network is that poor
initialisation could still be prone to fitting unrealistic models. Unfortu-
nately, placing additional constraints on this architecture is difficult
as it changes model interpretation. For example, setting boundaries
on the predicted values of the PK parameters in the final layer of
the network breaks the interpretation of the learned functions. An-
other downside is that learned effects can only be visualised when
the number of covariates used in each sub-model facilitates 2 or 3-
dimensional visualisation. Next, we evaluated only a relatively small
number of hyper-parameters settings, i.e. only a single hidden layer
with three options for the number of neurons. Extensive searches over
appropriate hyper-parameters can be problematic, especially when
data is sparse. In the real-world experiment for example, only 12

patients were used to find the optimal weights during training as
well as the optimal hyper-parameters. When evaluating a large set
of hyper-parameters, we risk overfitting the hyper-parameters to the
validation set. A promising alternative is to perform hyper-parameter
selection based on the desired complexity of the learned functions in
the multi-branch network.

In the real world experiment, we compared model performance
based on prediction accuracy represented by the RMSE, similar to
previous studies [13, 19]. This metric might not be sufficient to fully
compare the models. However, common tools for comparing pop-
ulation PK models, such as the Akaike and Bayesian information
criterion, are not suitable for use with neural networks as they gen-
erally over-estimate model complexity when penalising the number
of parameters. Although the current results suggest improvement of
models when adding constraints, more research on multiple data sets
might be needed to draw conclusions.

Finally, we only evaluated the use of constraints in the context of
a drug with relatively simple kinetics. How performance is affected
in more complex settings was not within the scope of the current
work. It is possible that the selection of appropriate constraints can be
difficult in models with an extremely large number of PK parameters.
Similarly, setting constraints on parameters with a more complicated
interpretation can also be difficult.

Future work could investigate the implementation of more sophis-
ticated inductive biases. It might be of interest to selectively tighten
boundaries based on patient covariates. We would for example expect
lower distribution volumes for children compared to adults. Other ap-
proaches could focus on placing constraints on the learned functions in
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the multi-branch network, for example by encouraging monotonicity
at unseen values of the covariates. Maximum a posteriori estimation
of the neural network weights can also be performed using prior
distributions that favour less extreme functions. Alternatively, Gaus-
sian Processes are an interesting alternative to neural networks, as
they provide a more practical approach for placing priors over the
functional form of the relationships. Additionally, Gaussian Processes
allow for a practical method for estimating uncertainty over learned
functions. Finally, a method for performing covariate selection using
the multi-branch network would be of interest to aid model develop-
ment.

5.5 conclusion

This work has focused on improving the robustness of the deep
compartment model framework. The suggested model constraints
can be used to improve the performance of this model class when
data is sparse, which is frequently the case in the pharmacometric
literature. The proposed hybrid model has many of the benefits of
current ML methods used in the pharmacometrics literature, and
addresses some of their main limitations. The suggested improvements
further demonstrate the method as a viable alternative to classical
population PK modelling.
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A P P E N D I X

5.a supplementary tables and figures

mean rmse ± one sd (%-age divergent)
model n = 20 n = 60 n = 120

weight, height, age

None 15.7 ± 32 (17) 12.9 ± 4.5 (4) 12.1 ± 0.39 (0)
Initialisation 16.7 ± 19 (8) 13.0 ± 4.6 (4) 12.2 ± 0.69 (0)
Boundary 15.8 ± 3.0 (2) 12.7 ± 0.81 (0) 12.1 ± 0.78 (0)
Global parameters 14.1 ± 5.7 (1) 12.8 ± 0.43 (0) 12.1 ± 0.27 (0)

ffm , age

None 14.3 ± 49 (18) 12.6 ± 1.6 (3) 12.1 ± 0.32 (0)
Initialisation 15.1 ± 26 (9) 12.6 ± 2.8 (5) 11.9 ± 0.37 (0)
Boundary 14.2 ± 2.1 (2) 12.5 ± 0.34 (0) 11.9 ± 0.3 (0)
Global parameters 13.3 ± 0.87 (0) 12.6 ± 0.33 (0) 12.0 ± 0.28 (0)

Abbreviations: RMSE = root mean squared error, SD = standard deviation.

Table 5.A.1: Results for the models trained using a hidden layer size
of 32.
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mean rmse ± one sd (%-age divergent)
model n = 20 n = 60 n = 120

weight, height, age

None 16.8 ± 36 (21) 13.0 ± 8.1 (5) 12.1 ± 0.58 (0)
Initialisation 16.5 ± 31 (6) 13.2 ± 9.7 (5) 12.4 ± 0.87 (0)
Boundary 15.8 ± 2.2 (2) 12.8 ± 0.63 (0) 12.2 ± 0.93 (0)
Global parameters 14.1 ± 1.3 (0) 13.0 ± 0.57 (0) 12.2 ± 0.39 (0)

ffm , age

None 15.5 ± 41 (24) 12.6 ± 4.6 (5) 12.1 ± 0.43 (0)
Initialisation 15.4 ± 16 (13) 12.6 ± 9.1 (5) 12.0 ± 0.4 (0)
Boundary 14.7 ± 1.4 (0) 12.6 ± 0.42 (0) 12.0 ± 0.37 (0)
Global parameters 13.5 ± 0.85 (0) 12.5 ± 0.43 (0) 12.0 ± 0.27 (0)

Abbreviations: RMSE = root mean squared error, SD = standard deviation.

Table 5.A.2: Results for the models trained using a hidden layer size
of 128.
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Figure 5.A.1: Schematic representation of the multi-branch network.
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Figure 5.A.2: Comparison of the predicted concentration-time curves
in the real-world data experiment. Results are shown for the
naive (a), boundary constraint (b), global parameter (c), multi-branch
network (d), and Neural-ODE (e) models. The median prediction
(black line) over the 10 data set folds (lightly coloured lines) along
with the observations (stars) are shown for the same patient.
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Figure 5.A.3: Extrapolation of predictions in the Neural-ODE quickly
degenerate. Showing the prediction for the same patient as in Figure
s2, but with an expanded time window. Predictions by the Neural-ODE
can behave unexpectedly when data is insufficient to fully describe
drug kinetics. The median prediction (black line) over the 10 data set
folds (lightly coloured lines) along with the observations (stars) are
shown.
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Figure 5.A.4: Learned effects of the multi-branch network in the real-
world data experiment. In the top panel, the combined effect of
weight and height on clearance and volume of distribution are shown.
Horizontal and vertical lines depict the marginal effect of respectively
weight or height at a fixed value of the other covariate. In a, we can see
that weight and height are similarly important for predicting changes
in clearance. However, in b we see that the importance of height is
stronger than that of weight. In the bottom panel, the effect of age on
clearance (c) and blood group on clearance (d) are shown.
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5.b detailed description of model constraints

We propose three simple approaches for constraining the solution
space of DCMs (figure 5.2.1). First, boundary conditions were imposed
on the PK parameters by using a transformed sigmoidal function fol-
lowing the output layer of the neural network (referenced as boundary
constraint):

ζ(i) = π(ϕ(x(i))) · (u− l) + l (5.8)

Here, π(·) corresponds to the sigmoid function and l ≤ ζ(i) ≤ u
is the constrained PK parameter vector. The boundaries can be set
empirically based on prior knowledge. For example, bounds for the
volume of distribution of drugs tightly bound to plasma proteins
can be based on the expectation that the plasma volume of a typical
male is roughly around 46 - 52 mL/kg. We focus on setting a single
boundary for all individuals, although it is possible to use a function
to adapt l or u based on the covariates. Lower bounds of [0, 0.3, 0.05,
0] and upper bounds of [0.5, 7, 0.5, 2] for respectively CL (L/h), V1

(L), Q (L/h), and V2 (L) were used.
Next, global parameters θ for a subset of the PK parameters were

estimated in parallel to w (referenced as global parameters constraint).
We chose to estimate θ = {Q, V2} since these parameters affect the
early distribution of FVIII, and drug concentration measurements at
early time points are usually too sparse to identify covariate effects
on these parameters. PK parameter vectors were reconstructed in
the correct order using design matrices constructed using indicator
functions 1A. This function is specified in algorithm 1. An example of
A = {1, 3} using one-based indexing results in:

1{1,3} =




1 0
0 0
0 1
0 0


 (5.9)

The PK parameter vector can then be reconstructed using the fol-
lowing equation (continuing the example of A = {1, 3}):
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ζ(i) = 1A ·ϕ(x(i); w)+ 1−{A} ·θ =




1 0
0 0
0 1
0 0



[
ζ1 ζ3

]
+




0 0
1 0
0 0
0 1



[
ζ2 ζ4

]

(5.10)
Where −{A} corresponds to the indexes from [1..M] ̸∈ A. Finally,

we describe a neural network architecture where each covariate (or spe-
cific combinations thereof) are connected to independent sub-models
ψ, whose predictions are combined using a product (referenced as the
multi-branch network). This architecture is similar to a generalised
additive model, using product accumulation rather than the sum of co-
variate effects. The use of a product ensures that ζ(i) remains positive,
regardless of the prediction from each sub-model as long as these are
constrained to be positive. The use of a product also matches the stan-
dard implementation of covariates in population PK models (equation
3 in the main manuscript), and facilitates the interpretation of the
clinical relevance of each covariate. For example, covariates resulting
in a maximal net change 20% of the corresponding PK parameter are
often deemed clinically insignificant in the pharmacometrics literature
[16]. Again, indicator functions are used to determine the position of
each prediction in the PK parameter vector:

ζ(i) =
D

∏
d=1

10[1Ad · ψd(x(i)d )] (5.11)

Here, 10 is an indicator function mapping zeros to ones. Softplus
activation functions were used in the output layer of each sub-model.
Single covariates can also be linked to multiple PK parameters. Like-
wise, multiple covariates can be passed to a sub-model when an
interaction between covariates is expected. An added benefit of this
approach is that the output of each sub-model can be visualised, allow-
ing for the interpretation of the learned covariate effects. A schematic
overview of the multi-branch network is provided in supplementary
figure 5.

5.c detailed investigation of effects of constraints on

model training

In this section, we further investigate the effect of each constraint on
model training. First, we found that there was roughly 4.5x greater
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Algorithm 1 Pseudo-code describing the indicator function.

1: M← length(ζ)
2: A← a ⊂ [1..M]; subset of indexes to set to 1

3: N ← length(A)
4: Z ← zeros(M, N)
5: for i in eachindex(A) do
6: Z[i, A[i]] = 1
7: end
8: return Z

variability in median RMSE over replicates over data folds compared
to within fold replicates. This suggest that weight initialisation have a
relatively small effect on final model accuracy. Looking at the number
of divergent models when fitting the naive model, the frequency of
divergent models seemed to be related to specific data folds:

Figure 5.C.1: Divergent models per training fold.

In 21/36 of examples where divergent models occurred, 4 or 5 of
the within fold replicates resulted in divergent models. Most divergent
models were trained on data from fold 2, 3, and 8. We therefore look
specifically into the distribution of the covariates as well as the initial
PK parameter estimates for the models trained on these folds. We
did not observe very large differences between covariate distributions,
with possibly a slightly higher fraction of younger patients in data
folds 2, 3 and 8. This might cause the model to lean slightly more
towards lower volume of distributions (as children have lower volume
of distribution), resulting in sharper peaks. There do not seem to be
very distinct differences between the drug levels between ‘bad’ and
‘good’ data folds:
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Figure 5.C.2: FVIII measurements per fold.

Random initialisation of the naive neural network weights results
in initial estimates of the PK parameters around 0.7 (L or L/h):

Figure 5.C.3: Distribution of PK parameters after initialisation.

This image shows 100 random initialisation of the network weights
and the distribution of resulting initial PK parameter estimates for
subjects in training fold 2 with n = 120. The distributions are data
agnostic, they initialise around 0.7 no matter the input data. Due to
the relatively low initial estimate for V1 and high estimate for CL,
concentration time curves start out with high peak concentrations and
short half-life. Next we look at how the PK parameters change during
optimisation when training on n = 120 and n = 20 on one of the
problematic folds (and compare to n = 20 on a good fold):
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Figure 5.C.4: PK parameters during training.

We see that for one of the problematic folds (fold 2) the estimate
of volume of distribution (V1) drops down towards zero after an
initial increase for all subjects at n = 20, while V2 increases rapidly.
This results in high peak concentration predictions due to a rapid
distribution from a small central volume into a larger peripheral
volume. This is not seen when training on larger patient data sets, or
on ‘good’ data folds. Removing the younger patients from the data
fold is not sufficient to improve optimisation:

Figure 5.C.5: PK parameters during training without children.

We then look at the effect of adding constraints to the model:
Above we show the PK parameter predictions after training on n

= 20 subjects for a ‘bad’ fold, and show predictions in the test set.
Similar to initialisation, the addition of bounds to the value of the PK
parameters changes the initial estimates of the PK parameters. The
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Figure 5.C.6: PK parameters when adding constraints.

effect of initialisation and providing bounds seem to be somewhat
similar, with a notable exception that placing bounds causes the es-
timates of V2 to be mainly located at the extremes of the bound (i.e.
0 and 2 L). Additionally, the variability in V1 is larger compared to
the other models. It is possible that placing bounds seems to have
a similar effect as initialisation. In the global parameter model, PK
estimates during the first 50 epochs of training look somewhat similar
to those obtained using the naive model:

Figure 5.C.7: Comparison of first 100 epochs.

An important distinction is that in the naive model, the estimate
for V2 rises concurrently with the value of V1, whereas in the global
parameter model, V2 remains somewhat stable during optimisation. It
seems that setting global variables regularises the optimisation proce-
dure in such a way that gradients of these parameters are potentially
smaller compared to the other parameters. We can show that specifi-
cally using a global variable for V2 has a similar effect as using global
parameters for both parameters. Using a global parameter for Q still
results in unrealistic solutions.

If we set the initial estimates of V2 to be very high (3 L) or low
(0.1 L) the model still results in reasonable models when using global
parameters for V2:

Optimisation can also be improved by only setting bounds on the
value of V2:
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Figure 5.C.8: Using global variables for Q or V2.

Figure 5.C.9: Effect of parameter initialisation.

We find here that placing softer bounds (for example by using a
softsign instead of a sigmoid) might be a reasonable approach, since
we observe a propensity of V2 estimates ‘getting stuck’ at the extremes
of the sigmoid during optimisation. We ran the synthetic experiment
again for these two V2 specific constraints on the data sets with n = 20
subjects, using 8 neurons in the hidden layer of the neural network:

Figure 5.C.10: Setting bounds on V2.
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median rmse ± one sd (%-age divergent)

model

weight + height +
age

ffm + age

Naive (from original ex-
periment)

14.7 ± 0.42 (18%) 14.1 ± 0.48 (12%)

Softsign bound on V2 17.4 ± 3.5 (5%) 17.5 ± 21.8 (5%)
Global parameter for V2 16.8 ± 2.1 (2%) 16.4 ± 41.1 (1%)

Abbreviations: RMSE = root mean squared error, SD = standard deviation, FFM =
fat-free mass.

Table 5.C.1: Model accuracy when using specific constraints.

5.c.1 Conclusion

The results hint at the importance of the data used for training (es-
pecially when the number of samples is sparse), since it can bias the
optimisation procedure to converge to unrealistic solutions. Unfor-
tunately, we could not find specific data that causes the behaviour.
Although initialisation and the use of bounds seem to improve opti-
misation, there is still a large variability in the PK parameters after
convergence. Global parameters on the other hand seem to result in
distinct solutions, which we found (in this case) to be more similar
to models trained on larger data sets. We can further identify the
behaviour to be specifically related to the estimate of V2. Setting this
PK parameter to be global, or setting bounds on it specifically can
improve solutions. It could be the case that the models have iden-
tifiability issues between V1 and V2 during optimisation, such that
additional constraints can potentially be useful to improve the model.

5.d visualisation of covariate effects

Visualisation of the learned effects for each of the covariates were
obtained from the multi-branch networks by taking each sub-model
and entering dummy input within the domain of the training data. In
order to compare learned effects across model replicates, the output
of each sub-model was normalised with respect to its prediction at
the location of the median covariate value:

ψ∗s (xs) =
ψs(xs)

ψs(Med[xs ])
(5.12)

The prediction of ζ(i) now decomposes into:
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ζm = θTV ·
Sm

∏
s

ψs(xs) (5.13)

Where θTV = ∏Sm
s ψs(Med[xs]) is the typical value for PK param-

eter ζm over all individuals. Note the similarity of this equation to
equation 3 in the main manuscript. This way the prediction from each
neural network is anchored to 1 at the median value of each of the
covariates, similar to how covariates are implemented in NONMEM.
Since covariate effects are combined using a product, the full model
is unconstrained with respect to the scale of the predictions from
each sub-model and variance of the unnormalised learned effects is
high. For example, if the prediction of ψ1 is very low after random
initialisation of the network, the model can still produce the same PK
parameter predictions to other replicates by increasing the scale of
predictions from ψ2. The normalisation corrects for these differences
between replicates.

Now that we have ψ∗s (xs), we can query this model to obtain predic-
tions at any value of the covariate. Visualisation of these predictions
results in the figures as reported in the manuscript.
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abstract

This work focuses on extending the deep compartment model (DCM) frame-
work to the estimation of mixed-effects. By introducing random effects, model
predictions can be personalised based on drug measurements, enabling the
testing of different treatment schedules on an individual basis. The perfor-
mance of classical first-order (FO and FOCE) and machine learning based
variational inference (VI) algorithms were compared in a simulation study. In
VI, posterior distributions of the random variables are approximated using
variational distributions whose parameters can be directly optimised. We
found that variational approximations estimated using the path derivative
gradient estimator version of VI were highly accurate. Models fit on the sim-
ulated data set using the FO and VI objective functions gave similar results,
with accurate predictions of both the population parameters and covariate ef-
fects. Contrastingly, models fit using FOCE depicted erratic behaviour during
optimisation, and resulting parameter estimates were inaccurate. Finally, we
compared the performance of the methods on two real-world data sets of hae-
mophilia A patients who received standard half-life factor VIII concentrates
during prophylactic and perioperative settings. Again, models fit using FO
and VI depicted similar results, although some models fit using FO presented
divergent results. Again, models fit using FOCE were unstable. In conclusion,
we show that mixed-effects estimation using the DCM is feasible. VI performs
conditional estimation, which might lead to more accurate results in more
complex models compared to the FO method.

159



160 mixed effect estimation in deep compartment models

6.1 introduction

Non-linear mixed effect (NLME) models serve as the established
methodology for the analysis of time-series data within the domain of
pharmacometrics. These models allow for the simultaneous estimation
of population and individual level effects using (semi-)mechanistic
models, and are particularly useful for disentangling different sources
of variability from data. The inclusion of random variables η imposes
a distribution over the model parameters and can be thought of
as representing the effect of unseen covariates. At prediction-time,
an individual estimate of the parameters can be obtained based on
the observations. Aside from improving prediction accuracy, these
individual estimates can also be used to simulate drug exposure or
effects based on unseen treatment strategies, facilitating the selection
of optimal treatment on a personalised basis.

Recently, the field of pharmacometrics has seen an influx of in-
terest in the use of machine learning (ML) methods [1–3]. Most ML
techniques favour data-driven learning of relationships between co-
variates and observations based on large amounts of data. However,
the availability of large data sets is often a limiting factor within the
context of pharmacometrics, rendering most standard ML methods
ineffective. Moreover, algorithms such as neural networks and tree-
based methods require the utilisation of drug dose as model input,
which has been shown to be problematic for reliable extrapolation to
unseen data [1, 4]. Combining prior knowledge with machine learning
methods in so-called hybrid model architectures poses a promising
alternative, potentially improving both data efficiency and predictive
performance.

One such architecture is the deep compartment model (DCM),
which uses neural networks to learn the relationship between co-
variates and the parameters of a system of differential equations
representing the (semi-)mechanistic model [5]. This architecture is
highly flexible: it supports all problems involving ODEs, can learn the
effects of specific covariates only (using explicit equations for others),
or can be used to learn the partial differential equations describing
drug kinetics/dynamics or parts thereof using Neural-ODEs [4, 6, 7].
In its current form, the framework focuses on the estimation of fixed
effects. As these models use highly flexible neural networks, failing to
assign part of the variability to random effects can potentially result
in the model internalising noise. Another downside is that model
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predictions cannot be individualised, limiting its potential for use in
clinical practice.

In the work by Lu et al., a variational auto-encoder (VAE) [8] is used
to produce individual prior distributions over the Neural-ODE param-
eters, enabling the personalisation of predictions [4]. In VAEs, neural
networks are used to estimate parameters (e.g. mean and variances) for
a set of random variables describing the Neural-ODE parameters. Op-
timisation is simplified by amortisation of the learning procedure [8,
9], often optimising the mean squared error of predictions combined
with a regularising term restricting complexity of the latent variables
(e.g. using hyper-priors such as a standard Normal). However, this
approach breaks the typical assumption that random effects are inde-
pendent of the covariates, and in practice often results in the variance
of (part of) the latent variables shrinking to zero to benefit prediction
accuracy [10, 11]. To circumvent these issues, estimation of random
effects should be decoupled from the estimation of fixed-effects as is
the case in classical NLME models.

The aim of this work is to formulate a robust approach to jointly
estimate fixed and random effects within the DCM framework. We
investigate the performance of classical first-order approximation
methods used in NLME models as well as machine learning based
variational methods [12]. The accuracy and stability of these differ-
ent algorithms are tested on a simulated data set using a population
pharmacokinetic (PK) approach. Finally, we showcase the use of the
mixed-effect DCM on two real world data sets of haemophilia A pa-
tients receiving standard half-life (SHL) factor VIII (FVIII) concentrates
during prophylaxis and surgery.

6.1.1 Estimation of random variables

Given a data set of covariates X, interventions I (e.g. drug administra-
tion), and measurements y for each subject i ∈ {1, . . . , n}, we typically
use an ODE-based model A(t) to represent the evolution of yi over
time:

yi(t) = A(t; ζi, Ii) + ϵ, where ϵ ∼ N (0, Σ) (6.1)

Here, matrix Ii contains individual treatment information with cor-
responding time points and ζi = f (xi; θ) are typical ODE parameters
(e.g. PK parameters) whose relationship to the covariates X are de-
scribed by a set of functions f with fixed effect parameters θ. Mixed
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effects models introduce a subject-specific random variable ηi ∈ RK on
(part of) the parameters of the ODE in order to account for additional
heterogeneity between subjects:

zi = g(ζi, ηi), where ηi ∼ N (0, Ω) (6.2)

Here, zi represents the individual estimate of the ODE parameters
and Ω is a K× K covariance matrix. We drop the subscript i in subse-
quent equations to reduce cluttering. Following from the Bayes rule
p(η | y) = p(y | η)p(η)/p(y), we can obtain maximum a posteriori
(MAP) estimates of η based on the measurements y by maximising the
joint likelihood p(y, η) = p(y | η)p(η). However, obtaining maximum
likelihood estimates of the fixed effect parameters is more complicated.
One way is to marginalise out the random variables, which results in
a complex integral often lacking a closed-form solution:

p(y; Θ) =
∫

p(y, η; Θ)dη, where Θ = {θ, Ω, Σ} (6.3)

Classical methods approximate this integral using a Laplace ap-
proximation around the mode of the random effects and linearise
the model by performing a first-order Taylor expansion. This results
in a Gaussian approximation of the random effect posterior, and is
known as the First-Order Conditional Estimation (FOCE) extended
least squares objective function (see appendix 6.B for derivation) [13,
14]. When using the FOCE objective, the model iterates through pro-
ducing MAP estimates of η followed by optimisation of Θ based on
the linearised model. Further approximation of the FOCE objective
results in the FO objective function, where the mode of η is fixed at
the population mean (i.e. zero), removing the need for the calculation
of MAP estimates (see appendix 6.B)[15]. However, individual random
effects are rarely located at zero (unless shrinkage is high) and the
resulting objective function is less accurate. In practice, the FO method
is only appropriate when the inter-individual variances are small [16].

6.1.2 Variational Inference

Model performance likely depends on the accuracy of the approxi-
mation. The Laplace approximation (and the FO and FOCE by exten-
sion) suffers especially when η posteriors are non-Gaussian, or have
multiple modes. Alternatively, we can apply Markov Chain Monte
Carlo (MCMC) methods to obtain samples of model parameters that
converge to their true posterior distributions. Unfortunately, MCMC
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quickly becomes computationally prohibitive when the number of
subjects and dimension of the random variables increases. This is
especially the case when the fixed effects model is a neural network
with ill-defined posterior distributions over its weights [17]. Fortu-
nately, several approximate methods for Bayesian inference have been
developed to reduce computational complexity.

A notable example is Variational Inference (VI), where the true
posterior is approximated by a (simpler) variational distribution q
[12]. The variational approximation is optimised by minimising its
Kullback–Leibler (KL) divergence with respect to the true posterior.
Since the true posterior is unknown, the evidence lower bound (ELBO)
is maximised instead, which places a lower bound on the marginal
likelihood p(y) (see appendix 6.B):

log p(y) = Eqϕ(η)

[
log p(y, η)− log qϕ(η)

]
︸ ︷︷ ︸

ELBO

+KL(qϕ(η)∥p(η | y))
︸ ︷︷ ︸

divergence
(6.4)

Here, qϕ is a tractable distribution parameterised by ϕ (e.g. ϕ =
{µ, σ} in the case of a Normal distribution). Since p(y) is a constant,
maximising the ELBO implicitly minimises the KL divergence. An
unbiased estimate of the expectation in Eq. 6.4 can be obtained using
Monte Carlo methods, but the resulting gradients have high variance.
Roeder et al. describe the path-derivative gradient estimator of the
ELBO, which has the property that the gradient variance shrinks to
zero as qϕ(η) approaches p(η | y) [18]. This means that a potentially
very close approximation of the true posterior can be obtained based
on the chosen complexity of qϕ. Choosing a Gaussian approximation
will result in a similar approximation of the integral in Eq. 6.3 as with
FOCE, albeit a stochastic one due to the Monte Carlo approximation
in Eq. 6.4.

It is of interest to compare VI to the classical first-order approxima-
tions when using the DCM framework to see if there are differences
in performance. Since VI performs conditional estimation, we expect
improved performance over the FO method in more complex models.
A potential benefit of VI over FOCE might be reduced computational
time as MAP optimisation over η is not required. It is also unknown
how well these models will behave when simultaneously learning
fixed and random effect parameters when covariate effects are learned
during the optimisation, as is the case in the DCM.
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6.2 methods

6.2.1 Synthetic data generation

A total of 500 samples of patient age, height, weight, blood group,
and von Willebrand factor antigen (VWF:Ag) levels were simulated
from a recently proposed generative model for haemophilia A pa-
tients [19]. This generative model implements non-linear relationships
to represent the joint distribution over these covariates. Covariate
relationships were based on a directed acyclic graph (DAG) repre-
senting the causal effects of the covariates. The resulting samples are
more realistic than samples from multivariate normal or marginal
distributions. After generating synthetic covariate data, factor VIII
levels were simulated based on a hypothetical population PK model
implementing the following covariate effects:

CL = 0.1 · weight
70

0.75
·
(

leaky_softplus(−VWF + 100)
55

+ 0.9
)
· exp(η1)

V1 = 2.0 · weight
70

· exp(η2)

Q = 0.15

V2 = 0.75

where leaky_softplus(x, α = 1
20 , β = 1

10 ) = α · x + (1− α) · log(exp(x·β)+1)
β

Each virtual patient was given a single dose of 25 IU/kg rounded
to the nearest 250 IU. Random samples η ∼ N (0, Ω) with Ω =[

0.037 0.0113
0.0113 0.017

]
were drawn to produce individual estimates of the PK

parameters. Next, simulated FVIII concentration–time curves were
generated based on a two compartment model. FVIII measurements
were collected at 4, 24, and 48 h after dose.

6.2.2 Evaluating the accuracy of variational approximations

The accuracy of variational posterior approximations was determined
by comparing learned random effect posteriors obtained from VI to
those obtained from MCMC sampling when using the true model from
the simulation. Posteriors were compared in two settings: (1) using
the true typical PK and population parameters (i.e. Ω and Σ), and (2)
when only using the true typical PK parameters (also approximating
the posterior over Ω and Σ). Covariance matrices M were decomposed
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in terms of marginal standard deviations S and correlation matrix C
such that M = S · C · S′. More information on prior and hyper-prior
selection for the MCMC model can be found in appendix 6.C.5.

For the MCMC model in scenario 1, a single chain was run to gen-
erate 10000 posterior samples using the NUTS algorithm. In scenario
2, 5000 samples were taken. Models were fit to the first data fold of
the simulated data set, and 20 replicates of the VI algorithm were
fit to compare to results from MCMC. The same prior distributions
were used in the VI model. Posterior similarity was determined based
on visualisations and quantified using the Wasserstein distance. The
ADAM optimiser using a learning rate of 0.1 was used.

6.2.3 Comparison of methods for estimating random variables

Given our computational budget, we decided on fitting 100 models
for each of the methods. The complete data set was divided into 20

random subsets of 60 subjects drawn with replacement for model
training with the remaining samples for determining model accuracy.
Previous results indicated that data from 60 subjects was sufficient
to fit accurate models [5, 20]. On each data fold, five replicates of
model training were performed which we deemed to be a minimal
requirement to represent variability induced by random initialisation
of model parameters. We chose to run a larger number of training
replicates over data folds rather than within a single data fold (i.e. 20

vs. 5) as we assumed that the specific training data had a larger effect
on parameter variability compared to random initialisation following
previous findings [20].

A multi-branch network based architecture of the DCM [20] was
fit to each training fold of the simulated data set. In a multi-branch
network, covariates are linked to specific ODE parameters such that
each covariate effect is learnt in isolation. This contrasts standard
fully-connected networks where all covariates are linked to all ODE
parameters, potentially making the model susceptible to learning spu-
rious covariate effects. In addition, the approach enables the direct
visualisation of learned functions for each of the covariates, making
the model inherently interpretable without the need for post-hoc
ML explanation methods. Subject weight and VWF:Ag were used
as covariates. Global parameters were estimated for Q and V2. In
the multi-branch network, weight was connected to CL and V1, and
VWF:Ag was connected to CL. The same model was optimised using
each of the objective functions. For each training replicate, random
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initial parameters were drawn from initial distributions. More infor-
mation on model architecture and initial parameter settings can be
found in appendix 6.C.

Again, covariance matrices M were decomposed in marginal stan-
dard deviations and correlation matrices. All variance estimates were
constrained to be positive using the softplus function. Models were
compared based on the root mean squared error (RMSE) of typical
predictions, accuracy of the estimated population parameters (repre-
sented by the KL divergence of Ω and mean absolute error (MAE) of
σ), and the similarity of the learned functions with respect to the true
covariate effects. Models were fit based on the MSE (no estimation of
population parameters), FO, FOCE, and VI objective functions. When
using the VI objective, random effect posteriors were approximated
using full-rank multivariate normal distributions. The expectation in
the ELBO was approximated using Monte Carlo simulation, taking
three random samples and using the reparameterisation trick [8] to
generate samples from q. For the models trained using FOCE, MAP
estimates of the random effects were obtained by minimisation of the
negative joint likelihood for each subject using the BFGS method at the
start of each epoch of training. Estimates were constrained between
[-3, 3] to improve stability during optimisation.

Models were trained for 2000 epochs and parameters were saved
every 25 epochs to determine model convergence and stability during
training. Most models converged within 250 – 500 epochs, so addi-
tional training iterations allowed insights into parameter stability after
convergence and risks of overfitting when overextending training time.
The ADAM optimiser using a learning rate of 0.1 or 0.01 was used
depending on training stability. Results at the end of optimisation
were compared based on the mean of saved parameter estimates from
the last 500 epochs of training. Uncertainty estimates over model
parameters were obtained by taking the standard deviation of final
parameter estimates for each of the training replicates. An overview
of the approach is shown in Fig. 6.2.1.

6.2.4 Evaluation on real world data

The performance of the algorithms was also evaluated on two real
world data sets of haemophilia A patients receiving SHL FVIII con-
centrates during prophylaxis (data set one) and following surgery
(data set two). The data originates from the OPTI-CLOT clinical trial
[21], were FVIII consumption was compared between standard weight-
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Figure 6.2.1: Comparison of the different methods in the simulation
study. First, a data set was simulated containing 500 virtual
subjects based on a previously published generative model
p(X). The data set was divided in 20 random data subsets with
replacement to create the training (n = 60) and testing (n ≈ 440)
data sets. On each data fold, models were fit using based on the
different methods (FO, FOCE, and VI). In the FOCE method,
a Gaussian approximation q̃ of the random effect posterior
p(Z | y) centred at its maximum a posteriori estimate (white
circle) is obtained. In the FO method, the mode is fixed at zero,
resulting in lower accuracy due to a potential mismatch with
the true posterior. In VI, the divergence between a variational
approximation q(Z) and the true posterior is minimised. After
fitting the models, the methods were compared based on the
accuracy of parameter estimates, their stability during training,
and the similarity of learned covariate effects to true effects.

based dosing regiments and PK-guided dosing in moderate and severe
haemophilia A patients undergoing surgery. The first data set contains
a total of 69 subjects who received a PK profile following a 25–50

IU/kg test dose of one of five SHL FVIII concentrates. Three FVIII
measurements were collected roughly 4, 24, and 48 h after adminis-
tration. Available covariates were haemophilia severity, body weight,
height, age, and VWF:Ag levels. A large proportion of VWF:Ag lev-
els were missing (65.2%), with some subjects missing body weight
or height data (1.4% and 4.3%, respectively). Missing values were
imputed based on the mode of prior distributions produced by the
generative model (i.e. the same model used for generation of the
synthetic data) [19].
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The second data set contained data on 66 subjects from data set one
who underwent a minor or moderate risk surgical procedure within 12

months after their PK assessment. FVIII levels were measured before
and after surgery and FVIII peak and trough levels were collected
during follow-up. Compared to the first data set, follow-up time was
longer (median of 144 vs 44 h) and subjects received a more complex
combination of bolus doses and continuous infusions. Available co-
variates were haemophilia severity, body weight, height, VWF:Ag and
VWF activity (VWF:act) levels, pre-assessed surgical risk scores, blood
loss, and NaCL administration during surgery. In this data set, most
subjects had multiple VWF measurements. Missing VWF:Ag values
were imputed based on the mode of the prior distributions from the
generative model multiplied by a factor of 1.3 (VWF:Ag levels are
higher following surgery [22]). This factor was calculated from the
mean difference between imputed VWF levels in data set one and
average VWF levels per subject in data set two. The mean VWF:Ag
value was used for each individual.

We fitted a multi-branch DCM with either an additive or combined
residual error model to both data sets. Subject CL and V1 was pre-
dicted based on fat-free mass (FFM) calculated from body weight,
BMI, and age using Al Sallami’s equation [23], with an additional
effect of VWF:Ag on CL. Random effects were estimated for CL and
V1 and global parameters were estimated for Q and V2. These choices
match the results from a recent study on the PK of FVIII [19]. The goal
of our analysis was to compare results from the different algorithms
rather than to produce optimal models for these two data sets. For this
reason, no additional covariate selection was performed. Models were
trained until convergence (roughly 1000 epochs for MSE, FO, and VI;
2000 for FOCE) and parameters were saved every 25 epochs. Mean
parameters from the last 250 epochs were presented. The ADAM opti-
miser with a learning rate of 0.1 was used. A larger number of epochs
(2000 instead of 1000) were required for the FOCE model to converge
when using a lower learning rate (0.01 instead of 0.1). Models were
again compared based on the accuracy of typical predictions, final pa-
rameter estimates and their stability during training, and the learned
functions.

6.2.5 Model code

Model code and the simulated data set are available at https://

github.com/Janssena/ME-DCM.jl.

https://github.com/Janssena/ME-DCM.jl
https://github.com/Janssena/ME-DCM.jl
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6.3 results

6.3.1 Accuracy of variational approximations compared to MCMC

First, we compared the accuracy of the variational posterior approxi-
mations obtained using VI to those obtained from MCMC. In Fig. 6.3.1,
we can see that applying the path derivative gradient estimator results
in accurate posteriors approximations and low variability across repli-
cates compared to the standard estimator. Results for the two scenarios
(with and without estimation of Ω and Σ posteriors) are summarised
in supplementary Table 6.A.1. Approximate posteriors were most sim-
ilar (represented by the Wasserstein distance) to the MCMC posteriors
when using the path derivative gradient estimator. In both scenarios,
variational posteriors of the individual random effects were highly
accurate (see supplementary Fig. 6.A.1). Contrastingly, posteriors for
the population parameters were less accurate as variational posteriors
tended to underestimate the variance of the MCMC posteriors. We
focus the remainder of the manuscript on results obtained using the
path derivative estimator.

6.3.2 Comparison of VI to first-order objectives

Next, we compare the performance of the different objective functions
on the simulated data. We found that models fit using the FOCE
objective function behaved erratically during optimisation. Several
models failed optimisation (non-positive definite Ω) which seemed to
be related to the specific formulation of the objective function used
(supplementary Fig. 6.A.2). A reduction of the learning rate (from
0.1 to 0.01) also improved stability of models fit using FOCE (data
not shown). In the remainder of the manuscript we thus show results
from the FOCE formulation based on Eq. s10 using a learning rate of
0.01 (see appendix 6.B).

In Fig. 6.3.2, we display the objective function value, log KL di-
vergence of Ω, and residual error estimate during training for the
FO, FOCE (Eq. s10 + reduced learning rate), and VI objectives. We
notice that the FO and VI objectives quickly converge to accurate esti-
mates of the population parameters. These models were not affected
by an over-extension of training time, as judged by the stability of
parameter estimates during the final 1500 epochs. In contrast, large
fluctuations in the KL divergence of Ω are observed when using the
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Figure 6.3.1: Accuracy of variational approximations of the random
effect posterior obtained trough MCMC. 95% confidence
regions of the posterior produced by MCMC (dashed lines)
and VI (coloured ellipses) are shown for a single subject across
20 replicates of model training. Variational approximations
when using the standard VI algorithm (left figure) and the
path derivative estimator (right figure) are shown. The path-
derivative estimator results in highly accurate posterior approx-
imations compared to the standard VI objective.

FOCE objective. These fluctuations are not always reflected by the
objective function value, making it difficult to determine actual model
convergence. Looking at the individual elements of the Ω matrix (i.e.
marginal standard deviations S and correlation matrix C), we notice
that estimates obtained using FOCE generally underestimated the
variances (supplementary Fig. 6.A.2).

The results at the end of optimisation for the MSE, FO, FOCE, and
VI objectives are summarised in Table 6.3.1. All methods resulted in
similar median root mean squared error of typical predictions. Results
for the FO and VI objectives were highly similar, with low error of
population parameter predictions. Models fit using the FOCE objec-
tive displayed biased parameter estimates as well as high variability
between replicates. We can see that models fit using VI completed
training slightly faster than models fit using FO (median run time
of 14.7 vs. 16.2 min), with FOCE models taking significantly longer
(37.7 min). The computational burden of VI can potentially be further
reduced close to the training time of MSE-based models by decreasing
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Figure 6.3.2: Objective function value and parameter accuracy during
training on the simulated data. Objective function value
(top row), log KL divergence of Ω (middle row), and the resid-
ual error estimate (bottom row) are shown for the models
fit using the FO, FOCE, and VI method. Solid lines indicate
median value across replicates along with 95% confidence inter-
vals. Dashed line indicates the true value of the additive error
(sigma). Crosses indicate models that failed optimisation. Mod-
els fit using the FOCE objective present higher bias of estimated
and lower stability during training.

the number of Monte Carlo samples to 1 (median run time of 5.2 min)
without loss of parameter accuracy (see supplementary Table 6.A.2).

Finally, we investigate the learned functions at the end of opti-
misation for each of the models (supplementary Fig. 6.A.4). For all
objectives, median covariate effects were very similar to the ground
truth functions used in the simulation. Interestingly, we notice a low
degree of bias of the learned covariate effects when using the FOCE
objective, even though the population parameters were inaccurate.
Compared to the mixed-effects models, use of the MSE objective
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method

run

time

(min-
utes)

rmse

(iu/dl)

kl

diver-
gence

of Ω

mae of

ω1

mae of

ω2

mae of

addi-
tive

error

(iu/dl)

MSE
3.2 ±
0.73

6.34 ±
0.37

- - - -

FO
16.2 ±

6.5
5.86 ±
0.25

0.009 ±
0.01

0.011 ±
0.01

0.0087 ±
0.001

0.47 ±
0.12

FOCE
(Eq. s10)

37.7 ±
7.5

5.75 ±
0.36

1.0 ± 313

0.11 ±
0.05

0.046 ±
0.03

0.92 ±
0.60

VI
14.7 ±

2.6
5.80 ±
0.59

0.011 ±
0.005

0.013 ±
0.008

0.0086 ±
0.002

0.23 ±
0.03

Abbreviations: SD = standard deviation, RMSE = root mean squared error, KL =
Kullback–Leibler, MAE = mean absolute error.

Table 6.3.1: Accuracy of model parameters after convergence for the
simulated data set. Median values ± SD for the models at the
end of convergence are shown. Parameter estimates obtained
from the FOCE objective function presented higher error and
variability between training replicates.

seemed to potentially result in a higher degree of variance in the
learned effects between model replicates.

6.3.3 Comparison on real world data

Next, we evaluated the performance of the different algorithms on
two real-world data sets. Patient characteristics for both data sets
are shown in Table 6.3.2. Models fit using a combined error model
depicted at least a 20 point decrease in objective function value for
all methods. In Table 6.3.3, we show the final parameter estimates for
the models with combined error. Models fit using FO or VI resulted
in similar median parameters estimates after convergence. However,
parameter estimates in some of the replicates of the FO model were
less stable, most notably with respect to ω1 and the proportional
error estimate (see supplementary Fig. 6.A.5). Parameter estimates
obtained from the FOCE method were again different from the other
algorithms. Both the ω2 and additive error estimates were notably
higher in both data sets. Again, the FOCE objective function value was
a poor indicator of model convergence, with parameters still changing
after apparent convergence (see supplementary Fig. 6.A.5). In contrast,
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models fit using VI quickly converged and parameter estimates were
stable.

Visualisation of covariate effects can help to provide insights in the
covariate effects learned by the models, as well as regions of higher
uncertainty due to data sparsity in parts of the covariate space (see
Fig. 6.3.3). Learned functions in the perioperative setting (data set two)
were similar to those learned based on the PK profiles (see Fig. 6.3.3
and supplementary Fig. 6.A.6). Lower uncertainty over the learned
functions was observed when using FOCE, but this result could be
replicated for the other objectives by lowering the learning rate (see
supplementary Fig. 6.A.7).

Figure 6.3.3: Learned covariate effects from models fit on real-world
data set one. Covariate effects for models fit using the MSE
(left column), FO (centre left column), FOCE (centre right col-
umn), and VI (right column) are shown. Learned functions are
shown for the effect of fat-free mass on clearance (top row),
fat-free mass on volume of distribution (middle row) and von
Willebrand factor antigen levels on clearance (bottom row) at
the end of training on data set one. Median covariate effect
(solid line) along with 95% confidence intervals are shown.
Grey histograms represent the corresponding covariate distri-
butions.
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data set one : data set two

pk profiles (n = 69) following surgery (n = 66)

covariate

number (%-age)
or mean

[range]

number of

entries with

missing values

(%)

number (%-age)
or mean

[range]

number of

entries with

missing values

(%)

Body weight (kg) 86.0 [50.4—134] 1 (1.4%) 85.7 [50.4—134] 0 (0%)

Height (cm) 179 [148—198] 3 (4.3%) 178 [148—198] 0 (0%)

Age (years) 47.6 [12.1—76.9] 0 (0%) 47.6 [12.4—76.9] 0 (0%)

Blood group 0 (0%) 0 (0%)

- A 19 (28%) 18 (27%)

- B 3 (4.3%) 3 (4.5%)

- AB 5 (7.2%) 5 (7.5%)

- O 42 (61%) 40 (61%)

Pre-assessed surgi-
cal risk NA 0 (0%)

- Low NA 35 (53%)

- Medium NA 31 (47%)

Haemophilia
severity 0 (0%) 0 (0%)

- Moderate 22 (32%) 22 (33%)

- Severe 47 (68%) 44 (67%)

Expected blood
loss NA 0 (0%)

- Mild NA 42 (64%)

- Moderate NA 24 (36%)

Blood loss during
surgery (mL) NA NA 227 [0—1200] 21 (32%)

Brand of FVIII con-
centrate 0 (0%) 0 (0%)

Octocog alfa
(Kogenate©) 18 (26%) 18 (27%)

Octocog alfa
(Advate©) 22 (32%) 21 (32%)

Moroctocog alfa
(ReFacto AF©) 4 (5.8%) 4 (6.1%)

Plasma-derived
FVIII Concentrate
(Aafact©)

3 (4.3%) 3 (4.5%)

Turoctocog alfa
(NovoEight©) 22 (32%) 20 (30%)

VWF:Ag (%) 113 [61—225] 45 (65.2%) 131 [0.43—384] 9 (13.6%)

VWF:act (%) 106 [58—185] 45 (65.2%) 127 [32—396] 9 (13.6%)

FVIII measure-
ments per patient 3.26 [3–10] - 8.61 [2–21] -

Abbreviations: kg = kilogram, cm = centimetre, FVIII = blood clotting factor VIII, aPTT
= activated partial thromboplastin time, s = seconds, PT = Prothrombin time, VWF =

von Willebrand factor, NA = not applicable.

Table 6.3.2: Patient characteristics for the two real-world data sets.
Patient characteristics and missing data are shown for data set
one and two. A point to note are the differences in the amount of
missing data between the two clinical settings. Most prominently,
VWF:Ag levels were missing for most (65%) subjects in data set
one.
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method

run time

± sd

(minutes)

rmse ± sd

(iu/dl)
ω1 (%cv)

± sd

ω2 (%cv)
± sd

additive

error

(iu/dl) ±
sd

proportional

error ±
sd

data set one (prophylactic setting)

MSE 2.1 ± 0.16 14.1 ± 0.24 - - - -

FO 9.1 ± 2.2 14.3 ± 0.77
0.289 (29.5)

± 0.044

0.127 (12.8)
± 0.020

3.09 ± 0.43
0.105 ±
0.013

FOCE (Eq.
s10) 54.2 ± 14

a
19.0 ± 4.3 0.240 (24.4)

± 0.019

0.465 (49.1)
± 0.052

3.70 ± 0.05
0.108 ±
0.004

VI 8.0 ± 0.51 14.3 ± 0.69
0.282 (28.8)

± 0.012

0.160 (16.1)
± 0.004

2.89 ± 0.077
0.094 ±
0.017

data set two (perioperative setting)

MSE 2.3 ± 0.17 27.6 ± 1.13 - - - -

FO 19.5 ± 3.8 32.0 ± 1.66
0.300 (30.7)

± 0.012

0.211 (21.3)
± 0.018

2.89 ± 1.63
0.151 ±
0.012

FOCE (Eq.
s10) 113 ± 20

a
31.5 ± 1.66

0.321 (32.9)
± 0.014

0.326 (33.5)
± 0.020

4.53 ± 0.37
0.152 ±
0.005

VI 14.6 ± 1.2b
30.0 ± 1.17

0.316 (32.4)
± 0.005

0.179 (18.0)
± 0.001

2.46 ± 0.024
0.165 ±
0.001

a = convergence after 2000 epochs, b = convergence after 1250 epochs. Abbreviations:
SD = standard deviation, RMSE = root mean squared error, CV = coefficient of

variation.

Table 6.3.3: Accuracy of model parameters on real world data sets
Median values ± SD are shown. Coefficient of variation was cal-
culated using the following formula: CV(%) =

√
exp(ω2)− 1 ·

100%. Compared to the other methods, the FOCE objective re-
sults in divergent parameter estimates. Higher RMSE in data
set two is indicative of the higher inter-individual variability in
FVIII levels observed during surgical procedures.
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6.4 discussion

In this work, we investigated the performance of classical first-order
approximations as well as ML-based variational methods for estimat-
ing mixed-effects in DCMs. Results from our simulation experiment
suggest that both the FO and VI objectives reliably converged to accu-
rate solutions, whereas the FOCE objective function resulted in biased
estimates and high variability amongst training replicates. These re-
sults were replicated in two real-world data sets, where we again
observed divergent results when using the FOCE objective. Here, VI
resulted in the most reliable results as some models fit using FO de-
picted lower parameter stability during training. Learned covariate
effects for all models could be visualised by using the multi-branch
architecture of the DCM. This enables model interpretation and is
useful for critiquing the model during development.

Even though the FOCE objective function is widely regarded to be
more accurate than the FO method, our results indicate that this is not
always the case. When the underlying model is highly flexible and
is trained using gradient descent, as is the case when using neural
networks, the FOCE algorithm seemed to result in poor convergence
behaviour. Although a different formulation of the objective function
and lowering of the learning rate slightly improved results, optimisa-
tion still was not reliable. Population parameter estimates were highly
variable during training, even after apparent convergence based on
the stabilisation of the objective function value. We hypothesise that
frequent changes to the loss landscape affect the stability of optimi-
sation when using gradient descent. Since the fixed effects model
initially has low accuracy, early η estimates shrink to the prior mean
with relatively high posterior variance. As a result, the prior variances
(Ω) might have a tendency to shrink to zero. After a few iterations, the
accuracy of typical PK parameter improves, resulting in jumps in the
estimates of η away from zero and potentially large changes to the loss
landscape. Methods such as gradient descent might perform poorly
in such settings, getting stuck in poor local optima and frequently
changing the direction of gradients in response to changes to the loss
landscape. For both the FO objective and VI such changes do not
occur, since the random effects are either fixed during training (as in
FO) or part of the parameter space (as in VI). Additional research is
needed to investigate why the FOCE objective fails in this setting.

As an alternative to the FOCE objective, we suggest VI for the
concurrent optimisation of fixed effect parameters and subject-specific
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random effect posteriors. We show that variational posteriors were
very accurate when using the path derivative gradient estimator, which
is simple to implement. Most probabilistic programming languages
such as Turing.jl or Pyro provide functionality for fast implementation
of VI [24, 25]. Results from our experiments indicate fast and stable
convergence to an accurate set of parameter estimates. Additional
benefits of VI are improved computational speed compared to FOCE
(even outperforming FO for one of our data sets) as well as it being part
of an active field of research, potentially bringing more improvements
in terms of speed and accuracy [26]. Furthermore, the complexity of
the variational approximation can be controlled, making the method
suitable for problems where the random effect posterior is multi-
modal or better described by a more complex distribution by for
example using Gaussian mixture models or normalising flows based
variational posteriors, respectively [18, 27].

VI is conceptually very similar to (stochastic) expectation max-
imisation (EM) procedures [28, 29]. In Stochastic approximation EM
(SAEM), samples from the random effect posterior are taken (for
example using MCMC) and a stochastic averaging procedure with
adaptive step sizes is performed to approximate the integral in Eq.
6.3 [29]. This is followed by maximisation of the fixed-effects parame-
ters based on the obtained approximation. In VI, samples are instead
taken from a Variational distribution whose parameters are directly
optimised along with the fixed-effects parameters. A benefit of the
latter approach is that we obtain a closed-form expression for the
random effect posterior and that no adaptive step size procedures are
required. It might be of interest to compare the performance of these
two approaches to see if there are notable differences.

Even though the FO method resulted in reasonable median param-
eter estimates in our experiments, the use of VI might be preferred. In
more complex models, FO is likely to result in less accurate parame-
ter estimates. We already found that some training replicates on the
second real-world data set showed signs of lower stability and poor
accuracy. It has been shown that the FO method can often produce
biased parameter estimates with incorrect uncertainty estimates in cer-
tain settings [30]. Furthermore, it is well known that the FO method is
not suited for problems with high levels of inter-individual variability
[16]. Especially in the context of pharmacodynamic (PD) models, this
variability is expected to be relatively large (often >100% coefficient of
variation) and so the FO method might be unsuited in most cases. In
contrast, accuracy of VI depends on the chosen variational approxima-
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tion (Gaussian approximations are often sufficient) and the number
of Monte Carlo samples, both of which can be adapted based on the
complexity of the problem at hand.

There were also some limitations to this work. First, our results
indicated that variational approximations estimated over population
parameters depicted an underestimation of posterior variance com-
pared to MCMC. Unfortunately, estimation of the population param-
eter posteriors using MCMC is computationally intensive as it still
requires iteration over all subjects in the data set. This might only be
feasible in small data sets (e.g. ≤ 30 subjects) and when using rela-
tively simple models (simple ODEs, small neural network, and small
number of random effect parameters). To estimate uncertainty over
model parameters we might need to resort to deterministic methods to
estimate standard errors. Similar to the approach used by NLME mod-
els, reasonable estimates can be obtained based on post-hoc Gaussian
approximations based on the Fisher information matrix. Second, we
use deterministic methods to optimise neural network weights. Since
models could be prone to overfitting, we might want to marginalise
over predictions from many model replicates to reduce spurious effects
and to obtain estimates of functional uncertainty. Ideally, uncertainty
over covariate effects can be estimated in a single model replicate.
Alternatively, the use of priors over the desired function space in this
context can be of interest in order to regularise function complexity.
It would be of interest to investigate how these improvements can be
implemented in practice. Finally, we did not perform an exhaustive
evaluation of the performance of the objective functions in many differ-
ent data sets, different degrees model complexity, or for very different
initial parameter and prior distributions settings. More research might
be desirable to evaluate the performance of VI in multiple practical
settings.

6.5 conclusion

In summary, our work introduces mixed-effects estimation in the
DCM framework. Highly accurate posterior approximations for the
random effects could be obtained using VI, and estimated population
parameters were accurate and stable during training. We found that
the FOCE method did not provide reliable results and might not be
suited for this purpose. In our experiments, VI was the most reliable
approach for the estimation of mixed effects and might perform better
in more complex models compared to FO. Mixed-effects models enable
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the individualisation of predictions based on clinical measurements,
enhancing the likelihood of the clinical adoption of these algorithms.
This extension to the DCM framework further promotes the use of
ML-based methods as a viable alternative to classical NLME models.
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[2] Kamilė Stankevičiūtė, Jean-Baptiste Woillard, Richard W Peck, Pierre Marquet,
and Mihaela van der Schaar. “Bridging the worlds of pharmacometrics and
machine learning”. In: Clinical Pharmacokinetics 62.11 (2023), pp. 1551–1565.

[3] Mason McComb, Robert Bies, and Murali Ramanathan. “Machine learning in
pharmacometrics: Opportunities and challenges”. In: British Journal of Clinical
Pharmacology 88.4 (2022), pp. 1482–1499.

[4] James Lu, Kaiwen Deng, Xinyuan Zhang, Gengbo Liu, and Yuanfang Guan.
“Neural-ODE for pharmacokinetics modeling and its advantage to alternative
machine learning models in predicting new dosing regimens”. In: Iscience 24.7
(2021).

[5] Alexander Janssen et al. “Deep compartment models: a deep learning approach
for the reliable prediction of time-series data in pharmacokinetic modeling”. In:
CPT: Pharmacometrics & Systems Pharmacology 11.7 (2022), pp. 934–945.

[6] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
“Neural ordinary differential equations”. In: Advances in neural information
processing systems 31 (2018).

[7] Dominic Stefan Bräm, Uri Nahum, Johannes Schropp, Marc Pfister, and Gilbert
Koch. “Low-dimensional neural ODEs and their application in pharmacokinet-
ics”. In: Journal of Pharmacokinetics and Pharmacodynamics 51.2 (2024), pp. 123–
140.

[8] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
(2022). arXiv: 1312.6114 [stat.ML]. url: https://arxiv.org/abs/1312.6114.

[9] Ankush Ganguly, Sanjana Jain, and Ukrit Watchareeruetai. “Amortized Vari-
ational Inference: A Systematic Review”. In: Journal of Artificial Intelligence
Research 78 (2023), pp. 167–215.

[10] Andrea Asperti and Matteo Trentin. “Balancing reconstruction error and kullback-
leibler divergence in variational autoencoders”. In: Ieee Access 8 (2020), pp. 199440–
199448.

[11] Bin Dai and David Wipf. “Diagnosing and Enhancing VAE Models”. In: (2019).
arXiv: 1903.05789 [cs.LG]. url: https://arxiv.org/abs/1903.05789.

[12] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational inference: A
review for statisticians”. In: Journal of the American statistical Association 112.518

(2017), pp. 859–877.

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1903.05789
https://arxiv.org/abs/1903.05789


180 mixed effect estimation in deep compartment models

[13] Lewis B Sheiner, Barr Rosenberg, and Kenneth L Melmon. “Modelling of
individual pharmacokinetics for computer-aided drug dosage”. In: Computers
and Biomedical Research 5.5 (1972), pp. 441–459.

[14] Mary J Lindstrom and Douglas M Bates. “Nonlinear mixed effects models for
repeated measures data”. In: Biometrics (1990), pp. 673–687.

[15] Lewis B Sheiner and Stuart L Beal. “Evaluation of methods for estimating
population pharmacokinetic parameters. I. Michaelis-Menten model: routine
clinical pharmacokinetic data”. In: Journal of pharmacokinetics and biopharmaceutics
8.6 (1980), pp. 553–571.

[16] B Jones and J Wang. “Constructing optimal designs for fitting pharmacokinetic
models”. In: Statistics and Computing 9 (1999), pp. 209–218.

[17] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon
Gordon Wilson. “What are Bayesian neural network posteriors really like?” In:
International conference on machine learning. 2021, pp. 4629–4640.

[18] Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. “Sticking the land-
ing: Simple, lower-variance gradient estimators for variational inference”. In:
Advances in Neural Information Processing Systems 30 (2017).

[19] Alexander Janssen et al. “A Generative and Causal Pharmacokinetic Model for
Factor VIII in Hemophilia A: A Machine Learning Framework for Continuous
Model Refinement”. In: Clinical Pharmacology & Therapeutics 115.4 (2024), pp. 881–
889.

[20] Alexander Janssen, Frank C Bennis, Marjon H Cnossen, Ron AA Mathôt, OPTI-
CLOT Study Group, and SYMPHONY Consortium. “On inductive biases for
the robust and interpretable prediction of drug concentrations using deep
compartment models”. In: Journal of Pharmacokinetics and Pharmacodynamics
(2024), pp. 1–12.

[21] Iris van Moort, Tim Preijers, Laura H Bukkems, Hendrika CAM Hazendonk,
Johanna G van der Bom, Britta AP Laros-van Gorkom, Erik AM Beckers, Laurens
Nieuwenhuizen, Felix JM van der Meer, Paula Ypma, et al. “Perioperative
pharmacokinetic-guided factor VIII concentrate dosing in haemophilia (OPTI-
CLOT trial): an open-label, multicentre, randomised, controlled trial”. In: The
Lancet Haematology 8.7 (2021), e492–e502.

[22] Iris van Moort, Laura H Bukkems, Jessica M Heijdra, Roger EG Schutgens,
Britta AP Laros-van Gorkom, Laurens Nieuwenhuizen, Felix JM van der Meer,
Karin Fijnvandraat, Paula Ypma, Moniek PM de Maat, et al. “von Willebrand
factor and factor VIII clearance in perioperative hemophilia A patients”. In:
Thrombosis and haemostasis 120.07 (2020), pp. 1056–1065.

[23] Hesham Saleh Al-Sallami, Ailsa Goulding, Andrea Grant, Rachael Taylor,
Nicholas Holford, and Stephen Brent Duffull. “Prediction of fat-free mass
in children”. In: Clinical pharmacokinetics 54 (2015), pp. 1169–1178.

[24] Hong Ge, Kai Xu, and Zoubin Ghahramani. “Turing: a language for flexible
probabilistic inference”. In: International conference on artificial intelligence and
statistics. 2018, pp. 1682–1690.

[25] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D Goodman. “Pyro: Deep universal probabilistic programming”. In:
Journal of machine learning research 20.28 (2019), pp. 1–6.



references 181

[26] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. “Ad-
vances in variational inference”. In: IEEE transactions on pattern analysis and
machine intelligence 41.8 (2018), pp. 2008–2026.

[27] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing
flows”. In: International conference on machine learning. 2015, pp. 1530–1538.

[28] Dimitris G Tzikas, Aristidis C Likas, and Nikolaos P Galatsanos. “The varia-
tional approximation for Bayesian inference”. In: IEEE Signal Processing Magazine
25.6 (2008), pp. 131–146.

[29] Bernard Delyon, Marc Lavielle, and Eric Moulines. “Convergence of a stochastic
approximation version of the EM algorithm”. In: Annals of statistics (1999),
pp. 94–128.

[30] Céline Dartois, Annabelle Lemenuel-Diot, Christian Laveille, Brigitte Tranchand,
Michel Tod, and Pascal Girard. “Evaluation of uncertainty parameters estimated
by different population PK software and methods”. In: Journal of pharmacokinetics
and pharmacodynamics 34 (2007), pp. 289–311.





A P P E N D I X

6.a supplementary tables and figures

wasserstein distance with respect to mcmc posterior ×10−3

vi algo-
rithm

η
(W2 ± sd)

σ
(W1 ± sd)

ω1
(W1 ± sd)

ω2
(W1 ± sd)

ρ
(W1 ± sd)

typical pk and population parameters known

Standard esti-
mator 9.0 ± 3.5 - - - -

Path deriva-
tive estimator 5.5 ± 2.9 - - - -

typical pk parameters known

Standard esti-
mator 8.8 ± 3.3 5.0 ± 0.6 7.2 ± 3.1 10.9 ± 3.2 46.9 ± 23.9

Path deriva-
tive estimator 4.5 ± 2.3 0.6 ± 0.3 6.7 ± 3.5 7.2 ± 4.0 43.4 ± 14.3

Abbreviations: VI = Variational Inference, W2 = 2-Wasserstein distance, W1 =
1-Wasserstein distance, SD = standard deviation.

Table 6.A.1: Accuracy of the variational posteriors compared to
MCMC. Wasserstein distances were calculated with respect
to multivariate normal distributions fit to the samples obtained
through MCMC. For σ, ω1, and ω2, MCMC posteriors were
represented by fitting a LogNormal distributions to the samples,
while a SkewNormal distribution was fit to represent the poste-
rior for ρ. Bold text represents the lowest Wasserstein distances.
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method

run

time

± sd

(min-
utes)

final

objec-
tive

func-
tion

value

± sd

rmse

± sd

(iu/dl)

kl

diver-
gence

of Ω ±
sd

mae

of ω1
± sd

mae

of ω2
± sd

mae

of σ ±
sd

(iu/dl)

One
sample

5.20 ±
0.41

298 ±
3.6a

5.83 ±
0.68

0.0089

± 0.022

0.014 ±
0.001

0.0029

± 0.003

0.050 ±
0.042

Three
sam-
ples

14.7 ±
2.6

309 ±
2.4a

5.80 ±
0.59

0.011 ±
0.005

0.013 ±
0.008

0.0086

± 0.002

0.23 ±
0.03

a = Based on stochastic estimates of the ELBO. Higher is better. SD =
standard deviation, RMSE = root mean squared error, KL = Kullback-Leibler,

MAE = mean absolute error.

Table 6.A.2: Comparison of parameter estimates of VI objective based
on the number of Monte Carlo samples. Median value ± SD
are shown for the VI models fit to the synthetic data experiment.
Decreasing the number of Monte Carlo samples from three to
one did not seem to affect parameter accuracy.
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A. Variational Approximations of the population parameters

B. Variational Approximations of the individual random effect posteriors

Figure 6.A.1: Posterior approximations using variational inference.
Variational posteriors for the population parameters (A) as
well as the individual random effect parameters (B) are shown.
Black dashed lines represent posteriors obtained through
MCMC. Results are shown for 20 replicates of the model fit
using the path derivative gradient estimator.
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Figure 6.A.2: Objective function value and parameter accuracy for the
FOCE objectives during training. The objective function
value (left column), log KL divergence of the estimated ran-
dom effect prior (centre column), and residual error estimate
(right column) during training are shown for the FOCE based
objectives. Results are shown for the FOCE objective according
to equation s9 (a), equation s10 (b) using the reduced learning
rate. Each line represents a single replicate fit to one of the data
folds. Dashed line indicates the true value for sigma. Crosses
indicate models that failed convergence. The formulation of
the FOCE objective based on equation s9 (a) depicts lower
stability during training and a higher fraction of models failing
optimisation.
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Figure 6.A.3: Population parameter estimates during optimisation us-
ing the FOCE objective. The log KL divergence of the esti-
mated random effect prior (a), marginal standard deviation of
ω1 (b) and ω2 (c), and their correlation coefficient (d) during
training are shown. Results are shown for the FOCE objective
according to equation s10 with reduced learning rate. Each
line represents a single replicate along the data folds. Dashed
lines indicate the true parameter value. Crosses represent early
end of optimisation due to errors. The model generally seems
to underestimate the marginal variances of the true prior dis-
tribution.
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Figure 6.A.4: Learned covariate effects after training on the synthetic
data set. Covariate effects for models fit using the FO (left
column), FOCE (Eq. s10; centre left column), VI (centre right
column), and mean squared error (right column) are shown.
Learned functions are shown for the effect of weight on clear-
ance (a), weight on volume of distribution (b) and von Wille-
brand factor on clearance (c). Median covariate effect (solid
line) along with 95% confidence intervals are shown. Dashed
black lines indicates the ground truth functions used in the
simulation.
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Figure 6.A.5: Parameter estimates during training on the real-world
data sets. Parameter estimates during training are shown for
the FO (a & d), FOCE (b & e), and VI (c & f) based objectives.
Results are shown for data set one (a-c) and data set two (d-
f). Median estimate (solid line) along with 95% confidence
interval across replicates are shown.
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Figure 6.A.6: Learned functions after training on real-world data set
two. Covariate effects for models fit using the MSE (left col-
umn), FO (centre left column), FOCE (centre right column),
and VI (right column) are shown. Learned functions are shown
for the effect of fat-free mass on clearance (a), fat-free mass on
volume of distribution (b) and von Willebrand factor antigen
(VWF:Ag) levels on clearance (c) at the end of training for data
set two. Median covariate effect (solid line) along with 95%
confidence intervals are shown. Grey histograms represent the
corresponding covariate distributions.
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Figure 6.A.7: Decreasing the learning rate lowers uncertainty over
learned effects for VI. Results are shown for the VI mod-
els trained using the regular learning rate (left column) and
reduced learning rate (right column). Learned functions are
shown for the effect of fat-free mass on clearance (a), fat-free
mass on volume of distribution (b) and von Willebrand factor
antigen levels on clearance (c) at the end of training for data
set one. Median covariate effect (solid line) along with 95%
confidence intervals are shown. Grey histograms represent
the corresponding covariate distributions. lr = learning rate,
VWF:Ag = von Willebrand factor antigen.
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6.b derivation of objective functions

6.b.1 Laplace approximation

Given a complex integral of the form
∫

f (x)dx, where f (·) is a twice-
differentiable function, f (x) can be re-expressed as g(x) = log f (x),
such that

∫
f (x)dx =

∫
exp g(x)dx. Consider the second-order Taylor

series expansion of g(x) around a point xz0:

g(x) ≈ g(x0) + g′(x0)(x− x0) +
1
2

g′′(x0)(x− x0)
2 (s1)

If we set x0 to be the mode of g(x) the second term becomes zero
(since g′(x0) = 0). We thus obtain the following approximation of the
integral:

∫
f (x)dx ≈

∫
exp(g(x0) +

1
2

g′′(x0)(x− x0)
2)dx (s2)

Since exp g(x0) = f (x0) is a constant, we can move it out of the
integral to obtain:

∫
exp(g(x0) +

1
2

g′′(x0)(x− x0)
2)dx = f (x0) ·

∫
exp(

1
2

g′′(x0)(x− x0)
2)dx

= f (x0) ·
√

2π

−g′′(x0)
(s3)

The second term in the last equation originates from integration of
the probability density function of a normal distribution:

∫
p(X)dx =

1
σ
√

2π
·
∫

exp
(
− 1

2σ
(x− µ)2

)
dx = 1 (s4)

From Eq. s4 we can see that σ ·
√

2π =
∫

exp
(
− 1

2σ (x− µ)2
)

. If we

set σ = −g′′(x0)
−1 we recover the second term in Eq. s3. The Laplace

approximation thus results in a Gaussian approximation around the
mode of the random effects:

∫
f (x)dx ≈ f (x0) ·

√
2π

−g′′(x0)
(s5)

In the context of non-linear mixed effects models this results in the
following objective function after simplification:
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L(Θ, η̂) = p(y | η̂; Θ) + log |Ω|+ η̂ ·Ω−1 · η̂T +
∣∣∣Ω−1 +

H(η̂)

2

∣∣∣ (s6)

Where H is the hessian of the likelihood with respect to η: H(η) =
∂2 p(y|η)

∂η .

6.b.2 First-order conditional estimation (FOCE)

To avoid the computation of the second order derivatives, the Hessian
matrix can be approximated as a function of the Jacobian vector of η̂:

E [H(η)] ≈ 1
2

E
[

J(η) · J(η)T
]

(s7)

This additional approximation results in the first-order conditional
estimation objective function (also see [1]):

L(Θ, η̂) = p(y | η̂; Θ)+ log |Ω|+ η̂ ·Ω−1 · η̂T +
∣∣∣Ω−1 +

E
[

J(η) · J(η)T]

4

∣∣∣
(s8)

We can further simplify this equation to obtain the FOCE objective
function that is used in NONMEM:

−2L(Θ, η̂) = log |C|+ (y− A(t; ẑ, I) + J(η̂) · η̂)2

C
(s9)

Where C = J(η̂) ·Ω · J(η̂)T + Σ and ẑ is the individual estimate
of the ODE parameters based on η̂. The Jacobian is calculated with
respect to the output of the ODE. An equivalent expression exists:

−2L(Θ, η̂) = log |C|+ (y− A(t; ẑ, I))2

Σ
+ η̂ ·Ω−1 · η̂T (s10)

We use this objective function (Eq. s10) in the manuscript.

6.b.3 The FO objective

In the FO objective, the mode of η is assumed to be located at the
population mean (i.e. zero). This results in the following objective
function following from Eq. s9:
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−2L(Θ, η̂) = log |C0|+
(y− A(t; z0, I))2

C0
(s11)

where C0 = J(0) ·Ω · J(0)T + Σ.

6.b.4 Derivation of the ELBO

In Bayesian inference, given a set of observations X = {x1, . . . , xn} we
are often interested in obtaining the posterior distribution over a set
of latent variables Z = {z1, . . . , zn}. We are however often unable to
compute the model evidence p(X) as this requires integration over all
possible values of Z. The goal of Variational Inference (VI) is to instead
minimise the differences between the true posterior and a (simpler)
variational approximation q(Z). One way to represent the differences
between two distributions is via their KL-divergence:

KL(q(Z)∥p(Z | X)) =
∫

q(Z) log
q(Z)

p(Z | X)
dz

= Eq(Z)

[
log

q(Z)
p(Z | X)

]

= Eq(Z) [log q(Z)]−Eq(Z) [log p(X, Z)] + log p(X)
(s12)

We can rewrite this expression to obtain:

log p(X) = Eq(Z) [log p(X, Z)− log q(Z)]
︸ ︷︷ ︸

ELBO

+KL(q(Z)∥p(Z | X))︸ ︷︷ ︸
divergence

(s13)

Note that the KL divergence is an asymmetric measure, i.e. KL(q(Z)∥p(Z |
X)) ̸= KL(p(Z | X)∥q(Z)). Swapping terms in the KL divergence re-
sults in a different objective function with different behaviour.

references

[1] Wang, Y. (2007). Derivation of various NONMEM estimation methods.
Journal of Pharmacokinetics and pharmacodynamics, 34, 575-593.
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6.c model architecture

6.c.1 Multi-branch network

In a multi-branch neural network architecture, the covariates are
connected to independent sub-networks, such that the model learns
the effect of each covariate in isolation. The independent covariates
are combined using a product, similar to the common implementation
of covariates in non-linear mixed effects models. In this sense, the
architecture is similar to a generalised additive model, using product
accumulation rather than the sum of covariate effects. Typical fully-
connected neural networks can learn complex interactions between
the covariates. By removing the possibility of learning such potentially
spurious correlations, model performance and generalisability can
potentially be improved. Similarly, we can specifically link covariates
with known causal effects on one of the parameters, preventing the
model from learning any spurious effects with respect to the other
parameters. An additional benefit of the approach is that the output
of each sub-model can be visualised, allowing for the interpretation
of the learned covariate effects. A schematic representation of fully-
connected and multi-branch networks is provided below.

6.c.2 Model architecture

A multi-branch architecture was used to learn the effect of weight (or
fat-free mass in the real-world experiment) on clearance and volume of
distribution, and the effect of von Willebrand factor antigen (VWF:Ag)
levels on clearance. The first model consisted of a single hidden layer
containing 12 neurons feeding into a transformed softplus activation
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function: π(x) = 1
10 · log(exp(10 · x) + 1). Inputs were normalised

between roughly 0 and 1 by dividing model input by 150 kg. Output
from this hidden layer was fed into two independent hidden layers,
each again consisting of 12 neurons connected to a single output
neuron. The two independent output neurons represent the effect of
the covariate on clearance or volume of distribution. This way, the
two effects share a similar base relationship based on the first hidden
layer which and individual differences between their effects on the
different PK parameters can be learned based on the second set of
hidden layers.

The second model (VWF:Ag on clearance) consisted of a single
hidden layer of 12 neurons feeding into a single output neuron. Again
the transformed softplus activation function was used. Inputs were
normalised between roughly 0 and 1 by dividing model input by
350%. Global parameters were estimated for Q and V2. All parameters
were constrained to be positive using a softplus activation function.
We chose 12 neurons in all hidden layers as this allowed a sufficient
level of complexity of the learned functions, while not being so large
as to result in excessive overfitting (which could be likely when using
128 neurons for example). The number of neurons can potentially be
optimised (by means of hyperparameter tuning), but we found the
risks of overfitting to be already sufficiently managed when using 12

neurons. Bias parameters in the output layers were initialised to ones
to initialise the model at reasonable estimates at the start of training.

6.c.3 Visualisation of learned effects

Visualisations of learned functions were obtained by entering dummy
input to each of the sub-networks. First, typical estimates for each of
the PK parameters were obtained by dividing the prediction of each
neural network to its prediction for the median covariate value (using
typical clearance, CLTV , as an example):

CLTV =
f1(x1)

f1(Med[x1])
· f2(x2)

f2(Med[x2])
(s14)

Here f1 represents the sub-network for the effect of weight (or fat-
free mass), while f2 represents the effect of VWF:Ag. We chose to use
a value of 60 kg for fat-free mass, and 100% for VWF:Ag. Each model
in the deep ensemble produces estimates of the typical value for the
PK parameters. This way the prediction from each neural network are
anchored to 1 at the median values of the covariates, similar to how



6.C model architecture 197

covariates are implemented in non-linear mixed effects models. After
calculation of the typical PK parameter estimates we can investigate
the variance of these values over replicates to determine their uncer-
tainty.

Predictions from each sub-network divided by their prediction at
the median covariate value can then be evaluated at any value of the
covariate. We can thus visualise model predictions along the entire
covariate space in order to obtain the visualisations.

6.c.4 Parameter initialisation

Model parameters were randomly drawn from initial guess distri-
butions at the start of optimisation for each training replicate. Since
the three optimisation algorithms share the same parameters (Θ =
{w, Ω, Σ}), the same initial guess distributions were used.

• Neural network parameters w were initialised using Xavier
initialisation: w ∼ Uniform(−x, x) where x =

√
(6/(in + out))

where in and out reference the number of input neurons and
output neurons for that layer, respectively.

• Covariance matrix Ω is used in the prior distribution over
the random effects η ∼ N (0, Ω), and was decomposed into
marginal standard deviations ω and correlation coefficient ρ.
The following distributions were used for these parameters: ω ∼
Normal(0.1, 0.025) truncated at [0, Inf] and ρ ∼ Normal(0, 0.1).

• Covariance matrix Σ represents the estimates of residual error.
The initial distribution for additive error was sampled from
σ ∼ Normal(0.1, 0.025) truncated at [0, Inf]. The same distribu-
tion was used to sample the initial proportional error estimate
whenever applicable.

The same initial guess distributions were used for the simulation
and real-world experiments. Only additive error was used in the
simulation experiment.

6.c.5 MCMC model

We first compared the accuracy of posterior distributions over the
random effects η obtained through MCMC and VI. We evaluated the
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different approaches in two settings: (1) the ground truth parameters
used in the simulation were known (i.e. we only estimate posterior
distributions over the random effects) and (2) only the typical PK
parameters were known (i.e. also estimate posterior distributions over
the population parameters Ω and Σ). For the MCMC model, we fit a
single chain to the data. Since this problem was relatively simple, the
model converged well and multiple chains were not required. Pseudo-
code representing the probabilistic models are shown in listing 6.1.

The following hyper-priors were used in setting 2:
S ∼ LogNormal(−1.5, 1): marginal standard deviations of Ω.
ρ ∼ Beta(2, 2): correlation coefficient in Ω.
σ ∼ LogNormal(−3, 1): additive error.

Listing 6.1: Pseudo-code for MCMC models.

using Turing

@model function model(zeta, omega, sigma, y) # setting (1).

eta ~ MultivariateNormal(zeros(2), omega)

z = zeta .* exp(eta) # individual estimates of PK

parameters

yhat = solve_ode(z)

y ~ MultivariateNormal(yhat, sigma)

end

@model function model(zeta, y) # setting (2).

sigma ~ LogNormal(-3, 1)

S ~ LogNormal(-1.5, 1)

rho ~ Beta(2, 2)

C = [1 rho; rho 1]

omega = S * C * transpose(S)

eta ~ MultivariateNormal(zeros(2), omega)

z = zeta .* exp(eta)

yhat = solve_ode(z)

y ~ MultivariateNormal(yhat, sigma)

end
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abstract

In rare diseases, such as haemophilia A, the development of accurate popula-
tion pharmacokinetic (PK) models is often hindered by the limited availability
of data. Most PK models are specific to a single recombinant factor VIII (rFVIII)
concentrate or measurement assay, and are generally unsuited for answering
counterfactual ("what-if") queries. Ideally, data from multiple haemophilia
treatment centres are combined but this is generally difficult as patient data
are kept private. In this work, we utilise causal inference techniques to pro-
duce a hybrid machine learning (ML) PK model that corrects for differences
between rFVIII concentrates and measurement assays. Next, we augment this
model with a generative model that can simulate realistic virtual patients
as well as impute missing data. This model can be shared instead of actual
patient data, resolving privacy issues. The hybrid ML-PK model was trained
on chromogenic assay data of lonoctocog alfa and predictive performance was
then evaluated on an external data set of patients who received octocog alfa
with FVIII levels measured using the one-stage assay. The model presented
higher accuracy compared with three previous PK models developed on data
similar to the external data set (root mean squared error = 14.6 IU/dL vs.
mean of 17.7 IU/dL). Finally, we show that the generative model can be used
to accurately impute missing data (<18% error). In conclusion, the proposed
approach introduces interesting new possibilities for model development. In
the context of rare disease, the introduction of generative models facilitates
sharing of synthetic data, enabling the iterative improvement of population
PK models.
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7.1 introduction

Haemophilia A is an X-linked recessive bleeding disorder caused by
a deficiency or dysfunction of the blood clotting factor VIII (FVIII).
Severe haemophilia A (endogenous FVIII activity level <1% or <1

IU/dL) are at increased risk of prolonged bleeding, significant mor-
bidity, and reduced quality of life. Personalised prophylaxis involving
the administration of exogenous FVIII is the cornerstone of haemophi-
lia A treatment. The pharmacokinetic (PK) properties of FVIII play a
crucial role in the determination of the optimal dosing regimen for the
prevention of spontaneous bleeding. However, the significant inter-
individual variability in the PK of FVIII makes accurately predicting
FVIII concentration-time profiles challenging [1, 2].

Population PK modelling has emerged as a valuable tool for charac-
terising the PK of drugs in heterogeneous patient populations. Several
of such models have already been developed for the wide range of
recombinant FVIII (rFVIII) concentrates currently used in clinical prac-
tice [3]. However, most have been developed for a specific brand of
rFVIII concentrate on relatively small patient populations. This might
pose problems, as differences in covariate implementations, potential
biases in small or single centre data sets, varying PK for different
rFVIII formulations, or the FVIII assay type/reagents can all poten-
tially affect model accuracy. External validation studies have indeed
shown that model parameters frequently need to be adjusted when
attempting predictions on new data [3–6]. Ideally, population PK mod-
els correct for these sources of variability, but this requires larger scale
data sets rarely available in part due to data confidentiality.

In order to adjust for variability between sub-populations, it can
be useful to consider causal inference techniques during model de-
velopment. Explicit use of these techniques has been lacking from
the pharmacometrics literature [7], although model components are
informally judged based on biological plausibility. In addition, coun-
terfactual analysis is used extensively in practice, for example, when
simulating individual drug exposure following alternative (i.e., "un-
seen") dosing schedules. However, more complex queries, such as
"what if the patient received a different drug", are not necessarily
supported by most models. To answer such questions, population PK
models should ideally incorporate notions of causality. As an example,
von Willebrand factor (VWF) levels are well known to be an important
determinant of FVIII clearance, but are rarely included as a covariate
[3]. One prominent reason is that VWF levels are seldom measured,
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and thus frequently unavailable during model development. Alter-
natively, covariates such as patient age or blood group – which are
correlated to VWF – are included. It is, however, likely that these vari-
ables have no independent causal effect, but rather that their effects
are mediated through VWF [2, 8, 9]. As a result, interventions affecting
VWF levels, such as haemostatic challenges sustained during surgery,
are not described by the model, resulting in incorrect predictions [10,
11].

An important component of causal inference involves detailing
variable dependencies in a directed acyclic graph (DAG). In a DAG,
nodes (variables) are connected via edges, which describe the presence
and direction of causal relationships:

X → Z → Y (7.1)

Here, variable X affects variable Z which in turn affects Y. This is
analogous to our previous example of age or blood group (X) being
related to VWF levels (Z) which has a causal effect on FVIII clearance
(Y). When we only implement the effect of X on Y, any effects on Z are
not represented by the model. The DAG facilitates the identification
of problematic variables and confounders affecting the predictions.

A DAG incorporates known information about causal effects with
domain-specific assumptions to describe the data-generating process.
Expanding on this view, we can create models that reproduce the
observed data based on the relationships in the graph. By supporting
population PK models with generative models, it is possible to impute
missing data, answer counterfactual queries, or generate realistic
virtual patients with corresponding drug exposures. In addition, it
is possible to share generative models instead of real patient data,
avoiding issues with data privacy. Similarly, we can combine multiple
PK models into a model ensemble and weight the predictions for any
new patients by their similarity to virtual ones from corresponding
generative models. This would offer an interesting new approach to
the development of population PK models and is especially relevant
in the context of rare diseases.

The contributions of the current work are three-fold: (1) to learn
the causal graph describing the sources of variability relevant for
treatment using rFVIII concentrates, (2) to develop a generative model
based on this graph, and (3) to perform a first step in the development
of a PK model that accurately predicts FVIII levels in counterfactual
scenarios. Novel machine-learning (ML) algorithms are used to sim-
plify the process of model development and to facilitate others to train
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the model on new patient populations. Additionally, we use inter-
pretable algorithms to promote causal interpretation and evaluation of
the model. This work describes an initial use case for haemophilia A,
but the proposed framework of combining causal inference, generative
models, and ML-based population PK modelling can of course be
applied to other problems.

7.2 methods

7.2.1 Causal graph

Causal relationships between all relevant variables were described
using a DAG and was informed based on previous literature on the PK
of FVIII and consultations with (paediatric) haematologists (see Figure
7.2.1). Correctness of the proposed DAG was evaluated by fitting
models for alternative hypotheses and comparing model performance.
In the generative model, VWF levels were affected by multiple factors,
including patient blood group and age (the latter mediated through
the presence of comorbidities). It was assumed that these factors had
no independent causal effect on FVIII PK. To test this assumption,
an alternative model was fit with age and blood group as covariates
(removing VWF) and compared with a model where age and blood
group were added after learning the effect of VWF.

Next, the effect of patient weight and/or height on FVIII clearance
(CL) and volume of distribution (V1) acts through unobserved factors
U, which could, for example, represent plasma volume. We hypothe-
sised that the variability in this latent factor is more closely correlated
to fat-free mass (FFM), and thus compared models using an estimate
of FFM [12] to those with weight and/or height as covariates.

We assumed that the variability of inter-compartmental clearance
(Q) and peripheral volume of distribution (V2) was relatively low such
that covariates were less important for these parameters. However, the
specific rFVIII concentrate administered was chosen to affect all PK
parameters, of which the effects are likely attributable to differences
in molecular structure. Models were also fit including the effect of
FFM on Q and V2.

Finally, the type of assay (one-stage or chromogenic), the assay
reagents used, and specific rFVIII concentrates were identified to
affect FVIII measurements in the assay model. As an example of the
latter effect, lonoctocog alfa levels are known to be underestimated
by roughly twofold when using the one-stage assay [13]. We first fit
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Figure 7.2.1: Directed acyclic graphs describing covariate relationships.
Observed variables are denoted by circles, variables not in a circle indi-
cate unmeasured or latent variables. Partially filled nodes indicate par-
tially observed variables. Edges without an arrow represent relationship
with unknown direction. DAGs were separated per model to facilitate
presentation of the graph. a, age; b, blood group; C, co-morbidities; c,
treatment centre; CL, clearance; V1, volume of distribution; Q, inter-
compartmental clearance; V2, peripheral volume of distribution; D, diet;
DAGs, directed acyclic graphs; Gh, genetic factors related to height; Gv,
genetic factors related to VWF; h, height; I, product-specific inhibitor;
L, lifestyle; M, co-medication; p, rFVIII concentrate; r, assay reagent; S,
stress; t, assay type; U, latent variable; Uv, unknown factors related to
VWF; v, VWF; w, weight; y, observation; ϵ, residual variance; η, random
effect estimate representing unobserved effects; VWF, von Willebrand
factor.

an assay conversion for octocog alfa chromogenic levels to one-stage
levels using an exponential model, and then estimated an additional
proportional effect for lonoctocog alfa.

7.2.2 Population PK model

A population PK model was constructed using deep compartment
models (DCMs), a hybrid ML/PK technique that learns covariate
effects directly from data [14]. A specific neural network architecture
was used such that model output was interpretable. Additionally, a
deep ensemble was fit in order to approximate model uncertainty
with respect to the learned effects [15]. After fitting the fixed effects
model, random effects model parameters for Bayesian forecasting
were estimated by optimising the first-order conditional estimation
method with interaction (FOCEI) objective function [16]. More infor-
mation on model architecture and training approach is outlined in
Supplementary Material S1 section 1.

The model was fit on data from two clinical trials evaluating the
effectiveness of lonoctocog alfa (Afstyla) during prophylactic treat-
ment, kindly provided by CSL Behring GmbH. The data set included
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information on the country of residence, age, body weight, height, and
VWF:Ag levels of 103 patients with severe haemophilia A followed
over a combined total of 133 visits. Dense PK profiles (median of 12

FVIII measurements per visit) were collected for each of the individ-
uals. A two-compartment model was used and random effects were
estimated for the CL and V1 parameters. Combined additive and pro-
portional residual error were assumed. Covariates were selected based
on direct causal relationships in the DAG, avoiding confounders.

A subset of the patients also received octocog alfa (Advate, n = 27).
This enabled us to learn a conversion from lonoctocog alfa PK parame-
ters to octocog alfa parameters. It was assumed that any disparities in
PK followed from differences in the specific concentrate administered,
rather than the effect of the covariates. First, individual estimates of
the PK parameters were obtained based on the lonoctocog alfa data. A
Bayesian model was then used to obtain posterior distributions over
the proportional change in these parameters when predicting octocog
alfa levels.

Finally, because both the one-stage and chromogenic assay were
used to measure FVIII levels, an assay conversion model could be
developed for both lonoctocog alfa and octocog alfa. An exponential
model was used to transform chromogenic assay measurements to
corresponding one-stage assay measurements.

7.2.3 Generative models

We make the distinction between two different types of generative
models: those with a covariate-focus and those with a data set focus.
The former attempts to describe covariate relationships shared be-
tween data sets and is suited for data imputation and for estimating
downstream effects of "do expressions" (e.g., estimating the increase
in height and weight of a child ageing 2 years) following from the
causal graph. In contrast, generative models with a data set focus aim
to produce virtual patients similar to the real patients. These models
do not necessarily rely on a DAG are not suited for data imputation.

7.2.4 Covariate-focus generative model

Public data sets were collected in order to describe the relationships
between each of the covariates. Information on the relationship be-
tween body weight, height, and age was obtained for 1,635 men from
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the National Health and Nutrition Examination Survey (NHANES)
data set [17]. Publicly available data on VWF:Ag were extracted from
several publications using WebPlotDigitizer (Rohatgi A., version 4.6)
[8, 18]. A total of 870 VWF:Ag levels with corresponding patient age
and blood group were available. Depending on the complexity of
the relationships, different probabilistic ML models were fit based on
the DAG to learn each of the conditional distributions. Heteroscedas-
tic noise was assumed in all models. More details can be found in
Supplementary Material S1 section 2.

7.2.5 Data set specific generative model

A generative model was developed for the data from the lonoctocog
alfa data set. To this end, neural spline models were fit to learn the
joint distribution over patient age, weight, height, and VWF levels. A
large, curated data set of virtual patients is shared alongside model
code.

7.2.6 Model evaluation

Accuracy of the generative model with covariate-focus was evaluated
using the lonoctocog alfa data in two scenarios: (1) data on VWF
levels were missing and (2) only data on patient age was available.
The first scenario represents data frequently unavailable in the clinical
setting, whereas scenario two reflects an extreme setting where none
of the covariates used in the PK model are available. Two approaches
for data generation were compared. In the first approach, data were
generated a priori based on the median of the prior distributions. Be-
cause data on blood group was unavailable in the lonoctocog alfa data
set, predictions were compared assuming that all patients either had
blood group O or non-O. In the second approach, a Bayesian model
was implemented to produce posterior distributions of the missing
covariates and random effect parameters based on observed FVIII
levels. Here, the prior distribution for VWF:Ag was implemented as a
mixture distribution indexed by blood group. As a result, the model
also obtains a posterior probability of the patient having blood group
O. Again, posterior median was collected. Accuracy of the generated
covariates was evaluated using the mean absolute percentage error
(MAPE).
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Performance of the predictive model was validated on an external
data set of FVIII PK profiles collected for patients with moderate and
severe haemophilia A (n = 40) during the OPTI-CLOT clinical trial
[19]. Only data from patients who received octocog alfa and turoctocog
alfa (NovoEight; similar PK as octocog alfa [20]) were used. The data
set contained information on patient age, weight, height, blood group,
and VWF:Ag levels. VWF levels were available for 16 patients. Missing
values were imputed using the generative model using the a priori
approach. A median of 3 FVIII measurements were available per
patient, collected roughly 4, 24, and 48 hours after dose. The one-stage
assay was used to measure FVIII levels. Predictions from the PK model
were thus converted from chromogenic to one-stage levels using the
assay conversion model. Model performance was compared with four
representative PK models trained on one-stage assay data of octocog
alfa, with two models also trained on other concentrates [1, 21–23].
Predictive performance was represented by the root mean squared
error (RMSE), mean error (ME), and coefficient of determination (R2).

7.2.7 Model code

Models were implemented in the Julia programming language (version
1.8.3) with the DifferentialEquations.jl package as a main dependency
[24]. All relevant model code (including generative models) is available
at https://github.com/Janssena/DeepFVIII.jl.

7.3 results

An overview of the patient characteristics for the lonoctocog alfa data
set and the OPTI-CLOT data set are shown in Table 7.3.1. Importantly,
data on VWF levels were missing for more than half of patients (24/40)
in the test data set.

A deep ensemble of DCMs was fit to predict lonoctocog alfa levels
measured using the chromogenic assay. The final model included the
effect of FFM on CL and V1 and the effect of VWF on CL. The DAG
is shown in Figure 7.2.1. The validation set RMSE of median typical
predictions from the deep ensemble was 11.0 ± 1.1 IU/dL. Coefficient
of variation of random effects on CL and V1 were 23% and 18%, respec-
tively (CV(%) =

√
exp ω2 − 1× 100). Estimated standard deviation

of additive error was 1.3 IU/dL and the estimate of proportional error
was 8.4%.

https://github.com/Janssena/DeepFVIII.jl
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training data test data

lonoctocog

alfa

octocog

alfa
overall

octocog

alfa

turoctocog

alfa

n 103 27 40 19 21

Age in years 26 [1–60] 32 [19–60] 49 [18–77] 48 [18–77] 49 [21–77]

Height in cm 172 [84–194] 178 [163–190] 182 [148–198] 183 [143–195] 179 [170–198]

Weight in kg 68 [12–112] 77 [59–100] 89 [61–134] 88 [61–133] 95 [63–134]

BMI 21 [13–37] 25 [19–30] 27 [19–43] 27 [19–36] 27 [21–43]

Fat-free mass
in kg 55 [9.6–75] 59 [50–72] 66 [44–85] 66 [44–85] 67 [52–78]

Blood group
O missing missing 63% 53% 71%

VWF:Ag (%
missing)

114 [42.7–296]
(0%)

125 [73–242]
(0%)

115 [73–225]
(60%)

141 [108–222]
(63%)

106 [73–225]
(57%)

Number of
FVIII mea-
surements
(median)

1,465 (12) 292 (11) 125 (3) 57 (3) 68 (3)

Assay One-stage + Chromogenic One-stage

Reagent Pathromtin
SL

Coamatic test
kit Treatment centre specific (unspecified)

Abbreviations: BMI = body mass index, FVIII = factor VIII; VWF:Ag = von Willebrand
factor antigen.

Table 7.3.1: Patient characteristics. Medians and [ranges] are shown.

Learned functions could be visualised and matched expectations
about the causal effect of the covariates (see Figure 7.3.1). Investiga-
tions on alternative hypotheses supported the proposed final model
(see Table S1).

Next, the conversion model was created to adjust individual lonoc-
tocog alfa PK parameters to octocog alfa PK parameters. Estimated
CL of octocog alfa was increased by 15% (95% credible interval (CrI):
13–17), V1 was decreased by 19% (95% CrI: 16–23), Q was decreased
by 74% (95% CrI: 49–83), and V2 was 223% higher (95% CrI: 193–253).
The learned correction factors led to very accurate predictions using
the random effect estimates for rFVIII-SingleChain in all but one pa-
tient (see Figure S9). The conversion of chromogenic assay levels to
one-stage assay levels was represented by the following equation:

osa = max
(

0, −3.06+4.76·csa0.66

2.10Lonoctocog alfa

)
(7.2)

After applying the PK and the assay conversion, test error on the
external data set was slightly higher compared with accuracy on
the train set (RMSE = 14.6 IU/dL, R2 = 0.90). The RMSE of typical
predictions from our model was lower compared with three of the
previously published models [1, 21, 22] (mean RMSE = 17.7 IU/dL; see
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Figure 7.3.1: Visualisations of learned covariate effects. Each line depicts
the median effect over the predictions from the deep ensemble, along
with its 90% CI. Histograms represent the distribution of the observed
covariates. In the bottom right, the median and its 95% credible interval
from the posterior distributions of the difference in PK parameters
between lonoctocog alfa and rFVIII are shown. The shaded area covers
a <20% change in the PK parameter value. CI, confidence interval; PK,
pharmacokinetic; rFVIII, recombinant factor VIII; VWF, von Willebrand
factor.

Table 7.3.2), whose predictions also presented a slightly higher degree
of bias (ME of 3.81 vs. 1.50 IU/dL). The most accurate alternative [23]
depicts similar performance to our model (RMSE = 15.4 IU/dL, R2 =
0.89).

Finally, the accuracy of the generative model was evaluated in the
two missing data scenarios (see Table 7.3.3). The Bayesian approach
outperformed the a priori approach in terms of MAPE in all cases.
When using the a priori approach to impute VWF levels, MAPE of
predictions was 30.0% when assuming all individuals had blood group
non-O and 32.1% when assuming blood group O. The MAPE of the
median VWF:Ag levels obtained from the Bayesian approach was
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model

training

data

rmse of

typical

predic-
tions

(iu/dl)

me of

typical

predic-
tions

(iu/dl)

R2

Björkman et al. [1]
Octocog

alfa +
PD-FVIII

16.6 3.85 0.87

Nesterov et al. [21]
Octocog

alfa
17.6 3.82 0.85

McEneny-King et al. [22]
Octocog

alfa + other
SHL

19 3.76 0.86

Allard et al. [23]
Octocog

alfa + other
SHL

15.4 1.13 0.89

Causal DCM (ours)
Lonoctocog

alfa
14.6 1.5 0.9

Abbreviations: DCM = deep compartment model, FVIII = factor VIII, PD =
plasma-derived, ME = mean error, PK = pharmacokinetic, R2 = coefficient of

determination, RMSE = root mean squared error, SHL = standard half-life.

Table 7.3.2: Accuracy of population PK models. Root mean squared error,
mean error, and coefficient of determination for each of the models on
the test set are shown.

17.6%. Overall, imputation of height was the most accurate (MAPE of
3.9–4.3%), with imputation of body weight having relatively high error
(MAPE of 22.4–25.5%). Interestingly, the MAPE of imputed VWF:Ag
levels was similar in both missing data scenarios (MAPE of 17.6% and
17.9%).

7.4 discussion

In this work, we aimed to develop a population PK model that fol-
lows techniques from causal inference. First, relationships of relevant
variables and potential confounders were described using a DAG. The
graph supports the selection of important covariates to include in the
PK model while offering a natural way to interpret consequences of in-
terventions on any of the variables. Next, a hybrid ML/PK model was
fit to predict lonoctocog alfa levels measured using the chromogenic
assay. Because part of the patients in the data set also received octocog
alfa shortly before their lonoctocog alfa PK profile was taken, the
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mape (%) ± sd

scenario approach height weight ffm

vwf :ag

(assumed

bg)

VWF:Ag
(and blood
group)
missing

a priori - - -

30.0 ± 25

(non-O)
32.1 ± 19

(O)
Bayesian - - - 17.6 ± 14

All PK
model
covariates
missing

a priori 4.3 ± 3.4 25.5 ± 24 16.8 ± 16

30.0 ± 25

(non-O)
32.1 ± 19

(O)
Bayesian 3.9 ± 3.1 22.4 ± 22 14.7 ± 14 17.9 ± 15

Abbreviations: BG = blood group, FFM = fat-free mass, MAPE = mean absolute
percentage error, PK = pharmacokinetic, SD = standard deviation, VWF:Ag = von

Willebrand factor antigen.

Table 7.3.3: Accuracy of the generative model. The average mean absolute
percentage error between the true and generated covariate values along
with its standard deviation is shown. Bold text indicates the most accurate
model in each of the two scenarios.

model could be extended to correct for the difference in PK between
these two concentrates. By estimating the difference with respect to
the individual PK parameters estimates for lonoctocog alfa, we sim-
ulate the intervention of only changing the FVIII concentrate. The
resulting predictions for octocog alfa were highly accurate based on a
proportional change in the PK parameters. Only for a single patient
were discordant results observed, potentially as a result of an unseen
variable that specifically affects the PK of octocog alfa (e.g., rFVIII
specific inhibitors).

We then determined the generalisation capacity of the model by
comparing the error to predictions from previous PK models on data
of patients who had received octocog alfa and turoctocog alfa mea-
sured using the one-stage assay. Predictions from our model thus
needed to be corrected for differences between FVIII concentrates as
well as the measurement assay used. Nonetheless, our model pre-
sented lower RMSE compared with three of the previous models (with
roughly similar performance to the most accurate alternative), even
though an important covariate – VWF:Ag – was missing in more than
half of the patients. Although it is difficult to determine the clinical
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impact with respect to prediction accuracy, it is encouraging that we
obtained at worst similar accuracy to models specifically trained on
data of a different rFVIII concentrate and measurement assay.

To support the model in settings involving missing data, we aug-
mented the model with a generative model which reproduces the data
based on the DAG. Evaluations of this model depicted good imputa-
tion performance, with <18% error when imputing VWF:Ag levels in
the lonoctocog alfa data set. This model even provided accurate (<18%
error) predictions of PK model covariates in a very limited setting
when only patient age was known.

The above results indicate the benefit of viewing PK model develop-
ment through a causal lens. The main applied tool of causal inference
involved using a DAG to describe the relationships of relevant vari-
ables. In the graph, we assumed that any causal effect of age and blood
group are largely mediated through VWF levels. Our results show
that these covariates were largely uncorrelated to the PK parameters
when VWF:Ag was already included in the model (see Figure S6). It
has already been extensively reported that VWF:Ag levels are lower
in individuals with blood group O [9]. Similarly, higher age correlates
with an increase in VWF levels [25]. Interestingly, this relationship dis-
appeared when correcting for the presence of specific comorbidities,
which we included in the DAG [26]. We explicitly specify that VWF
levels are partially observed, as these levels can vary over time related
to factors such as stress. Relatively recent VWF levels might thus be
necessary to correctly estimate the causal effect of interventions in the
graph. The same applies to the individual estimates of the random
effects.

In the PK model, we used an estimate of FFM to affect FVIII CL
and V1 rather than body weight. Although the use of body weight de-
picted similar predictive performance, the uncertainty of the learned
functions was higher. Additionally, the functions seemed to indicate
the model implicitly learning a measure of lean body mass as the
function flattened at higher body weight (see Figure S7). These find-
ings support the observation that body weight correlates poorly with
the PK of rFVIII at higher body mass index (BMI) [27]. A relevant
assumption in the model was that Q and V2 were not affected by any
covariates. It is common in PK models to implement allometric scaling
of these parameters. In our analysis, we did not find that adding the
effect of FFM on Q and V2 improved model accuracy. Additionally,
uncertainty in the learned functions was again large when their effects
were added, discouraging its inclusion in the model. Alternatively,
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we included the effect of differences between rFVIII concentrates on
all PK parameters (rather than on a single parameter). The model
produced accurate predictions for turoctocog alfa after correcting for
octocog alfa PK, suggesting that it might not be necessary to correct
for each specific molecular formulation of FVIII.

The final component of the proposed DAG deals with variables that
affect the measurement of FVIII levels. Corrections for discrepancies
between assays are rarely described in detail by FVIII population PK
models. There do exist models that incorporate such corrections [6,
28], or that correct for differences in measured FVIII levels between
treatment centres (potentially related to the use of different reagents)
[29]. Although we do describe several sources of variability affecting
FVIII measurements, we did not describe most of their potential effects
in the current work due to limitations of the available data. Examples
of additional sources of variability include different assay reagents, or
bias arising from incompatibilities between specific assays and certain
FVIII concentrates [30]. In order to correct for such biases, it might be
necessary to develop models on multiple data sets which should be
explored in future work.

A novel element of the current work is the addition of a generative
model to support population PK models. Differences in covariate avail-
ability can complicate the implementation of PK models in clinical
practice. Generative models can be used to impute missing values or
to simulate realistic patients. Additionally, these models can be used to
learn the joint distribution over the covariates with respect to a specific
data set. When encountering new data, these joint distributions can
be used to identify out-of-distribution samples for which the model
might not be appropriate. Additionally, it allows models to continue
training on new data, where new covariate effects are learned in re-
gions where the model does not yet have sufficient support. Such an
approach is an essential component of the Bayesian paradigm, where
model priors are used in sequential studies to iteratively update the
posterior. PK models can be trained locally, whereas model param-
eters can be shared, keeping actual patient data private. The use of
automatic ML models greatly support such an approach, whereas
the use of interpretable models proposed in the current work enable
the identification of model bias and errors. Concrete examples of ad-
ditional use cases of our approach include the sharing of synthetic
data with outcomes to pool information on risk profiles for different
mutations in rare cancers, or to continuously refine a PK model for
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vancomycin on specific patient populations [31], utilising information
from previous studies.

There were also some limitations of the current study. The pro-
posed PK model was mainly trained on a population of adult patients,
and thus might not be appropriate for paediatric patients. Next, the
models (including the previous population PK models) depicted an
underestimation of octocog alfa peak levels in the OPTI-CLOT data
set. This effect was not seen when making predictions for the subset
of patients who received octocog alfa in the training data set. It is
possible that differences between the used assay or patient population
(e.g., higher BMI in the OPTI-CLOT data set) influenced the results. It
is important that generative models are developed on large, represen-
tative data sets to reduce model bias when imputing missing values.
The availability of sufficiently large data sets can be an issue, also for
the development of data set specific generative models. Next, although
not necessarily specified in the DAG, we chose to represent the effect
of VWF levels using VWF:Ag, because public data on VWF:act levels
was scarce. It is unknown whether the relative amount of VWF or
its FVIII binding activity is more relevant for FVIII clearance. A com-
bination of both quantities might be a more accurate representation
of the effect of VWF. Finally, description of a comprehensive causal
DAG might be complicated for some drugs, potentially making the
proposed approach difficult to implement. In some cases, the DAG
might contain several variables that are either rarely measured or
difficult to determine even in an experimental setting. Although there
might then not seem to be much benefit to the creation of a DAG,
it can nonetheless be of use to identify confounders or to quantify a
degree of uncertainty in the downstream effect prediction when data
are scarce.

In conclusion, we present a hybrid ML/PK model utilising causal in-
ference techniques to predict FVIII levels in patients with haemophilia
A. The model accurately extrapolated to a different FVIII concentrate
and measurement assay in an external data set. By using probabilistic
models to learn the data generating process, the proposed approach
can also be used to generate missing data and simulate realistic virtual
patients. Additionally, by sharing these generative models, information
on otherwise sensitive data can still be made publicly available. The
approach introduces an interesting new paradigm for the continuous
refinement of population PK models.
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Figure 7.A.1: Schematic overview of hybrid ML/PK model architec-
ture. Hidden layers are indicated by filled rectangles. Output of the
independent neural networks is combined using a product to produce
the typical PK parameter estimates. X = covariate matrix, f = fat-free
mass, v = VWF:Ag, a, b, c = output of neural networks, ζ = typical PK
parameters [CL, V1, Q, V2], ODE = system of ordinary differential
equations, Y = dependent variable.
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Figure 7.A.2: Uncertainty over typical PK parameter estimates in the
deep ensemble. Black line represents the kernel density estimate
of the histogram.

Figure 7.A.3: Generative models based on neural networks. Left: genera-
tive model for height based on patient age. Right: model for generating
height based on body weight.
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Figure 7.A.4: Generative models based on neural spline flows. Joint
distributions for body weight and height (left) and age and height
(right).

Figure 7.A.5: Generative models for VWF. From left to right: model fit on the
training data, adjustment of the model based on the validation data,
and evaluation of the model by comparing simulated values to true
VWF:Ag..
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Figure 7.A.6: Assessment of the effect of age and blood group in two
alternative hypotheses. Horizontal bars indicate 95% confidence
interval. Shaded region covers a 20% change (in both directions) of
the typical PK parameter. Covariate effects with effects outside of this
range are often associated with clinically relevant effects.

Figure 7.A.7: Comparison of the learned effects in alternative hypothe-
ses. CL = clearance, V1 = volume of distribution, w = body weight, h
= height, U = latent variable.
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Figure 7.A.8: Alternative hypotheses with respect to the inclusion of
fat-free mass ( f ) on inter-compartmental clearance (Q)
and peripheral volume of distribution (V2).

Figure 7.A.9: Goodness-of-fit plot for rFVIII predictions after product
conversion correction. White filled dots represent the predictions
for the individual for whom the learned conversion from lonoctocog
alfa to octocog alfa was not accurate, whereas coloured dots represent
the predictions for the other patients.
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7.b model development

7.b.1 Deep compartment model

A deep compartment model was fit to predict lonoctocog alfa levels
based on patient fat-free mass and VWF:Ag levels. We use a specific
architecture where each covariate was linked to specific PK parameters
and effects are combined using a proportional model. In this archi-
tecture, independent models are fit to learn the effect of each of the
covariates (or combinations thereof) allowing for the interpretation of
learned effect by visualising the output of each sub-model. As a result,
the model is fully interpretable. Two independent neural networks
were fit, the first learning the effect of fat-free mass on clearance (CL)
and volume of distribution (V1), and the second learning the effect
of VWF on clearance. Predictions from these models were then lower
bounded at 0.01 to prevent predictions too close to zero and combined
using a product to produce the PK parameter estimates. Adjusted
softplus activation functions were used as a smooth alternative to the
relu in all layers except output layers:

π(x) = 1
β · softplus(β · x) (7.3)

Using β = 10.
A schematic overview of the model is provided in figure S1. In the

first network, a shared hidden layer with 12 neurons followed by two
separated heads were used to learn the effect of fat-free mass on CL
and V1. For the second neural network a single hidden layer with 6

neurons was used, feeding into a single output neuron. Model inputs
were normalised by dividing fat-free mass inputs by 90 and VWF:Ag
inputs by 300. Model predictions (of CL and V1) were concatenated
with a vector of two learned parameters (Q and V2), shared between
all individuals, to produce the PK parameter vector.

A deep ensemble model was fit by stochastic gradient descent using
the ADAM optimiser using a learning rate of 1e-2. A Monte Carlo
cross validation procedure was performed dividing the full data set in
an 80% train and 20% validation set for each replicate of the deep en-
semble. A total of 100 models were trained to build the deep ensemble.
At each epoch, a random sample of 60 patients without replacement
was taken from the train set and gradients were calculated. Models
were optimised for 3000 epochs. Optimal weights during the 3000

epochs were selected based on the lowest validation set error. After
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models were fit, PK parameter predictions were produced for each
of the 100 model replicate in the deep ensemble and the median pre-
diction was taken along with the 90% confidence interval for final
predictions.

Median typical PK parameter predictions were then used to opti-
mise the population parameters for the random effect variances and
the residual error. For this purpose, PK parameter estimates were
directly entered into a two compartment model in NONMEM and
population parameters were optimised using the FOCEI objective
function.

7.b.2 Visualising learned functions

Visualisations of learned functions were obtained by entering dummy
input to each of the neural networks for each of the replicates of the
deep ensemble. First, typical estimates for each of the PK parameters
were obtained by dividing the prediction of each neural network to its
prediction for the median covariate value (using CLTV as an example):

CLTV = f1(x1)
f1(Med[x1])

· f2(x2)
f2(Med[x2])

(7.4)

We chose to use a value of 60 kg for fat-free mass, and 100% for
VWF:Ag. Each model in the deep ensemble produces estimates of the
typical value for the PK parameters.

This way the prediction from each neural network are anchored to
1 at the median values of the covariates, similar to how covariates are
implemented in NONMEM. This removes the issue of complex inter-
play’s between the neural networks potentially inflating the variance
of the learned functions. For example, if the prediction of f1 is very low
after random initialisation of the network, the model can still produce
similar PK parameter predictions to other replicates by increasing the
magnitude of predictions from f2. This can greatly inflate the variance
of the learned functions when naively calculating quantiles.

After calculation of the typical PK parameter estimates we can
investigate the variance of these values to determine uncertainty in
the PK parameter estimates. Results for the final model used in the
manuscript (with fat-free mass on CL and V1 and VWF:Ag on CL)
is shown in figure S2. Here we see that the typical predictions of
CL, V1, and peripheral volume of distribution (V2) depict relatively
low variance between replicates. Predictions for inter-compartmental
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clearance (Q) show higher variance, suggesting poorer identifiability
of this parameter.

Predictions from each neural network divided by their prediction at
the median covariate value can then be evaluated at any value of the
covariate. We can thus visualise model predictions along the entire
covariate space in order to obtain the visualisations. The results are
shown in figure 2 of the main manuscript.

7.c representing relationships in the dag using genera-
tive models

Neural networks with two hidden layers (16 or 24 neurons) were
used to predict the mean and the variance of height conditional on
either body weight or age. Neural networks were fit for 5000 epochs
using the ADAM optimiser. Model and hyper-parameter (neurons
etc.) selection was based on visual inspection of the learned functions.
After fitting the models, model output was constrained in order to
improve extrapolation to unseen data. This was achieved by fixing
the predicted distribution over height for individuals with weights
above 120 kg or those above the age of 85. Model output was similarly
constrained between 40 and 210cm by using the following activation
function in the final layer of the model:

y = sigmoid(x) · (210− 40) + 40 (7.5)

Figures showing the predictions of the final models are shown in
figure S3.

For the inverse relationships, i.e. predicting either body weight
or age from height, normalising flows (NF) models were fit. NF is
a technique to learn complex distributions by performing invertible
transformations of a random variable with a known density (usually
a standard normal). By using an invertible mapping, the probability
density function of the transformed density can be computed exactly.
This approach was chosen as the shape of the distribution of weight
and age was dependent on the value of height. For example, at lower
height (i.e. for children) the weight distribution more closely resem-
bled a normal distribution, whereas at higher height (e.g. adults) the
weight distribution was more similar to a log normal distribution.
The chosen approach involved the use of a neural network to predict
the parameters for a neural spline flows model based on height. The
resulting joint distributions are shown in figure S4.
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Finally, generative models for describing the joint distribution over
age, blood group, and VWF:Ag were produced as follows. First, a
linear model was fit to predict 645 log transformed VWF:Ag levels
collected from figures presented in Biguzzi et al. based on age. The
mean effect of having blood group O on the mean VWF:Ag level
was inferred from a previous study. The subsequent model was then
validated on the remaining 225 levels. Based on the validation data,
the coefficient for age in the linear model was reduced by a factor
of 0.8 and was fixed for individuals below the age of 40. Finally, a
log normal distribution was fit to all VWF:Ag levels normalised by
age and blood group (e.g. using equation 4), assuming homoscedastic
noise with respect to age and blood group (see figure S5 for results).
The following equation adequately described the VWF:Ag levels:

VWF = ϵ · exp
(

4.11 + 0.515 ·max( age
45 , 40

45 ) · 0.7bg=0
)

(7.6)

Where ϵ ∼ LogNormal(µ = 0.158, σ = 0.348). Final evaluation of
the model involved comparing synthetic data to observed VWF:Ag
levels per blood group, which closely matched (see figure S5).

7.d evaluation of alternative hypotheses in the dag

The correctness of the DAG given the data was evaluated by compar-
ing model performance using different versions of the graph.

The absence of an independent causal effect of age and blood group
was evaluated by first fitting a model using fat-free mass, age and
blood group and visualising the learned functions. The resulting
functions indicated low importance of patient age, but an almost 50%
increase in clearance for individuals with blood group O compared to
those who did not. Next, we took PK parameters from the final model
(containing the effect of fat-free mass and VWF:Ag) and attempted
to add the effect of age and blood group. Compared to the model
without VWF:Ag, the learned effects for age and blood group were
greatly diminished. In figure S6 we show a forest plot depicting the
covariate effects in both models. The median difference in CL for
individuals with blood group O was now only 6%, including 0%
in its 95% confidence interval. For all ages, the previous effect was
completely eliminated. Although this does not provide conclusive
evidence, the results do point in the direction of both covariates acting
as mediators of VWF levels rather than having significant independent
causal effects.
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Next we investigated whether patient weight, height, or fat-free
mass were better predictors of clearance. The learned functions for
these models are shown in figure S7 and corresponding accuracy in
supplementary table 1. We see that the model using fat-free mass
performs similarly well as the model using weight as covariate, but
that the variance of the learned functions for weight are higher. Ad-
ditionally, at higher weight we can see the learned function flatten,
roughly starting at weights above 90 kg. Since most individuals above
this weight are likely at the higher spectrum of the BMI range, this
could indicate that the model is implicitly learning the effect of lean
body weight. Adding that the learned function for the effect of weight
depict higher uncertainty, it might be more appropriate to use fat-free
mass.

We can also have the model learn the appropriate combination
of weight and height, which was tested in the last hypothesis. This
model very slightly improves validation set error compared to the
other models. However, combining the two covariates in a single model
complicates its interpretation. In this case, the slight increase in model
accuracy does not weight up against the decrease in interpretability.

Finally, we would expect that the height of a patient correlates
reasonably well to variables such as lean body mass. However, the
high variance of the learned functions as well as the high validation set
error for the model that uses height seem to indicate that the models
cannot learn its effect well. Additionally, the absence of patients in the
50 – 100 cm range of height will likely result in the model having poor
extrapolation capabilities, especially seeing as the learned function for
V1 essentially degrades towards zero for this range.

Additional hypotheses that were tested are related to including
the effect of fat-free mass on Q and V2. The accuracy of the different
models are also shown in supplementary table 1, and the learned
functions are shown in figure S8. Again, although the addition of the
effect of fat-free mass on Q and V2 suggest a slight improvement in
accuracy, the uncertainty over the learned effects is very high.
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abstract

We introduce the OPTI-CLOT portal, a web-application aiming to facilitate the
adoption of pharmacokinetic (PK-)guided dosing to personalise treatment for
people living with rare bleeding disorders. One of the most important barriers
for the adoption of PK-guided dosing is its accessibility. Most centres do
not have access to the expertise required to perform and analyse PK profiles.
The OPTI-CLOT portal (https://opticlot.com/) aims to resolve this issue
by giving all hospitals in the Netherlands access to pharmacometric experts
specialised in giving dosing advice to caregivers of people with rare bleeding
disorders. We discuss the design of the portal, its adoption, and future aims.
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10.1 background

Haemophilia and von Willebrand disease are a rare bleeding disor-
der characterised by a deficiency or qualitative defect in coagulation
factor VIII (FVIII; haemophilia A), IX (FIX; haemophilia B), or von
Willebrand factor (VWF, von Willebrand disease). Patients with these
bleeding disorders have an increased (spontaneous) bleeding risk,
which can lead to debilitating arthropathy or life-threatening haemor-
rhages if not treated adequately. Hallmark of treatment is replacement
of the deficient coagulation factor using factor concentrates, non-
factor replacement therapy or desmopressin if applicable. Treatment
is administered preventively (prophylaxis) or acutely (on demand)
whenever bleeding has occurred, or when there is a high risk of bleed-
ing, for example during and after medical procedures. Prophylactic
treatment is based on the observation that patients with moderate
haemophilia (i.e. those with residual endogenous factor activity levels
> 1 IU/dL) have a less severe bleeding phenotype [1]. The overall
aim is thus often to maintain minimal factor activity levels above 1

IU/dL. However, this is complicated by a relatively high degree of
inter-individual variability in drug exposure when performing body
weight-based dosing [2].

Several clinical guidelines and expert groups recommend the use of
pharmacokinetic (PK-)guided dosing to personalise the treatment of
patients with haemophilia [3–6]. In PK-guided dosing, a PK profile is
constructed which provides individual estimates of parameters such
as drug in vivo recovery and half-life. These parameters are subse-
quently used to simulate drug exposure following different treatment
regimens. The optimal treatment regimen that achieves pre-specified
target levels can then be selected on an individual basis in consultation
with patient and treatment team. In spite of its potential benefits, more
widespread adoption of PK-guided dosing in routine clinical practice
might be desirable [7]. Two recent surveys have reviewed the use of
PK-guided dosing when switching from standard half-life (SHL) to
extended half-life (EHL) factor concentrates. They found that full PK
analysis was performed by less than 10% of 70 respondents within the
Subcommittee on FVIII and FIX of the Scientific and Standardisation
Committee of the International Society on Thrombosis and Haemosta-
sis and by 51% of 37 physicians from European haemophilia treatment
centres [6, 8]. This is indicative of a discrepancy between recommen-
dations by clinical guidelines and the adoption of PK-guided dosing
in clinical practice.
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One important barrier to tackle is accessibility to pharmacomet-
ric expertise [9, 10]. Most clinicians and haemophilia treatment cen-
tres lack the experience and expertise to perform and evaluate PK
analyses. Ideally, dedicated pharmacometricians with an expertise in
haematology are desirable. To facilitate the implementation PK-guided
dosing within the Netherlands, work-package 6 within the SYM-
PHONY consortium [11] introduced the OPTI-CLOT portal (https:
//opticlot.com/), an online web application where caregivers are
able to request dosing advice for patients with rare bleeding disor-
ders. The current version of the portal is aimed at providing dosing
recommendations for patients with haemophilia A, haemophilia B,
or von Willebrand disease. Users can request dosing advice for pro-
phylaxis, perioperative dosing, and dosing around bleeding events for
various factor and non-factor based therapies. In contrast to other web-
applications such as WAPPS-Hemo and MyPKFit, each dosing advice
is personally curated by an expert pharmacometrician in consultation
with the requesting caregiver [12, 13]. In addition, the portal is trans-
parent in its use of (published) population PK models and publishes
all newly developed models. The main aim of the OPTI-CLOT portal
is to provide a user-friendly approach to support PK analyses. We will
discuss the current design of the portal, its adoption, challenges, as
well as future perspectives.

10.2 design

10.2.1 Security and privacy

Since the OPTI-CLOT portal works with sensitive patient information,
it is crucial to ensure that proper security and privacy measures are
in place. To prevent unauthorised access, the portal makes use of
SURFconext, a service linking (academic) institutions to web-services.
This enables users to authenticate themselves using their institutional
account (i.e. not requiring new log-in information), while the portal
relies on information from the institutions to identify and authorise
users. Next, a two-factor authentication system is required to authen-
ticate users during each session to prevent unauthorised access. Each
session expires after a relatively short time interval when the user is
inactive, subsequently requiring re-authentication to access the appli-
cation. Design of the portal follows security recommendations made
for software in the medical domain [14, 15], and has gone through
rigorous quality control by the IT department at the Amsterdam UMC.

https://opticlot.com/
https://opticlot.com/
https://www.surf.nl/diensten/surfconext
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The privacy policy of the OPTI-CLOT web-portal is to store as
little information as possible about each patient as needed for produc-
ing dosing recommendations. Each patient is given an OPTI-CLOT
pseudo-ID rather than directly using actual medical health record
numbers. These pseudo-IDs can be stored in the health record system
of the associated institution. If the patient linked to a specific pseudo-
ID is unknown, the portal allows users to view the patient’s birth date
for identification. Before patient information is sent to the portal, the
requesting clinician must confirm that the patient has given their con-
sent. Patients can also request the removal of their data at any point in
time, and previous dosing recommendations can be downloaded from
the portal and stored locally at each institution so that no information
is lost.

10.2.2 Workflow

A schematic overview of the portal workflow is shown in figure 10.2.1.
Several screenshots of the application are available in supplementary
figures 10.A.

Figure 10.2.1: Schematic overview of portal workflow.
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Before a new user is able to access the OPTI-CLOT portal, they
must first register. After registering via the online form of the web-
application, the institutional account provided by the prospective user
is verified. If the user is involved in the care of patients with bleeding
disorders, the account is authorised, and the user sets up a two-factor
authentication method.

After completing the registration procedure, the new user has access
to the previous dosing requests solicited by their institution. At this
point, the new user is able to request dosing recommendation for both
new and existing patients. The workflow for a new patient is as follows.
The OPTI-CLOT portal contains input forms that are dynamically
changed based on the entered information. For example, different
information is required for patients with haemophilia A compared
to those with von Willebrand disease. This reduces the burden of the
user by only requiring them to fill in information relevant to the case
at hand. The input form is organised into four sections: Basic patient
characteristics (e.g. body weight, height and blood group), information
on the current treatment (e.g. current factor concentrate, prophylaxis
regimen), relevant clinical measurements (e.g. factor levels), and the
desired information with regard to the dosing recommendation(s) (e.g.
target levels, what to do in case of bleeding). When moving through
each section, all inputs are checked for errors in order to notify the
user of any problems. The procedure for existing patients is similar,
with the exception that most of the information is pre-filled based on
previous requests, and the user is requested to verify the information
to determine if all data is still up-to-date.

After completing the request, the pharmacometricians from the
OPTI-CLOT group are notified and the request is assigned to one of
the analysts. The data can then be downloaded in a format specifically
prepared for analysis. A secondary goal of the OPTI-CLOT portal is
to streamline and standardise report generation. The final result of the
analysis is a HTML file containing information on the PK profile along
with several proposed treatment regimens that achieve the desired
target levels. The report is interactive, and users can inspect drug
levels at any time point during the week or zoom into specific areas
of the produced figures. The initial report is uploaded to the portal
and any member from that institution can download and inspect the
advice. The requesting user is notified and can suggest any changes
to the report if so desired.

Finally, the OPTI-CLOT portal has a specific environment for clin-
ical trials that involve dose adjustments based on the PK of each
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subject. One example of a clinical trial that makes use of the portal
is the DosEmi trial [16]. This crossover study investigates whether
a reduction in drug concentrations of emicizumab, a non-factor re-
placement therapy option for patients with haemophilia A, is equally
effective compared to standard treatment regimens. Tailored dosing
recommendations are given for each subject, and treating physicians
are able to discuss patient preferences regarding the minimal dose
and dosing frequency with the patient in a shared decision making
process. The portal offers a dedicated input form for the study that
matches the information gathered during specific visits during the
trial.

10.3 adoption

In figure 10.3.1, we show the number of requests for dosing recom-
mendations for patients with a bleeding disorder made to our team.
In December of 2022, we introduced the OPTI-CLOT web-portal to the
members of the Dutch society of haemophilia (Nederlandse Verenig-
ing van Hemofilie Behandelaren; NVHB), and since then, the number
of requests has doubled with respect to earlier periods. We have ob-
served a general increase in the rate of incoming dosing requests after
COVID, likely due to centres attempting to clear backlogs. However,
this rate has been constant even in 2024, partly due to a large volume
of requests for dosing recommendations for subjects in the DosEmi
trial [16]. The portal currently has 24 users from 9 institutions and is
looking to expand to international partners.

10.4 perspectives

The main benefit of using the OPTI-CLOT portal is that it streamlines
both the process of requesting dosing advice as well as analysis of
the received data. The produced reports are interactive, making them
useful as an educative tool for both treatment teams and patients.
There are several ways these reports can be further improved. For
example, it might be interesting to allow users to directly make adjust-
ments to the provided dosing recommendations within the reports.
This facilitates shared decision making, especially when patients are
able to directly see the effect of changes in dose timing or altering
doses on drug exposure during consultation. Another way of helping
patients understand the effects of their treatment is combine the PK
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Figure 10.3.1: Number of requests for dosing recommendations over
the years. Dashed line indicates the date of the introduction of
the OPTI-CLOT web-portal (December 2022). Coloured area indicates
time period where no requests were received, likely as a consequence
of the COVID pandemic.

profile with applications that record dose administration (e.g. patient
logging applications such as VastePrik©). Such applications can use
the PK and dosing information to visualise real-time drug exposure.
An additional benefit of this approach would be that the recording
of treatment information might be improved as patients would want
real-time drug levels to be accurate. This might also improve patient
adherence as they can directly observe the consequences of missing
treatment.

In the near future, it may also be of interest to base the selection
of the optimal treatment regimen on the patients’ pharmacodynamic
(PD) profile. The PD profile describes the effect of the drug on the
body, and in the context of bleeding disorders would describe the
innate bleeding phenotype and risk of patients. One way this can be
achieved is by using repeated time-to-event models [17, 18]. These
models can be used to estimate the individual bleeding risk for each
patient, which can be used to simulate the projected number of bleeds
given a specific treatment regimen. However, PD-based methods are
relatively new and clinical studies will have to be performed in order
to evaluate their effectiveness and accuracy.

Finally, users of the OPTI-CLOT portal are currently required to
manually enter patient information. This information often originates

https://hemoned.nl/vasteprik/
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from the health record system, and the action of copying this in-
formation over to another application is potentially redundant and
error-prone. It is of interest to look at opportunities to link the portal
to electronic health record systems to automatically extract relevant
data. This lowers the burden for the requesting user, and improves
the accessibility of the portal. One example of such an initiative is the
Digizorg app (https://www.digizorg.app/), which collects the data
from the electronic health record in a specific format and displays it
to the user. Adding the OPTI-CLOT portal as a specific sub-module in
this app for patients with a bleeding disorder allows treatment teams
to automatically send relevant information to the portal such that
patient data can be exchanged automatically. This application also has
a patient facing side, which can for example also interface with the
portal to present real-time drug exposure.

10.5 conclusion

In conclusion, we present the OPTI-CLOT portal, a web-application
aiming to facilitate the adoption of PK-guided dosing for patients
with bleeding disorders. The application offers a simple workflow and
brings physicians and pharmacometricians together to improve the
treatment of this group patient population.
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10.a supplementary figures

Figure 10.A.1: Register page.
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Figure 10.A.2: Request overview.
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Figure 10.A.3: Request form.
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Figure 10.A.4: Example of dosing advice.
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G E N E R A L D I S C U S S I O N A N D P E R S P E C T I V E S

The aim of this thesis was to identify opportunities for machine learn-
ing methods to improve the treatment of patients with haemophilia
A as well as to describe ways of adapting existing algorithms to
requirements relevant to the field of pharmacometrics. In chapter
2, we performed a literature review to discuss the recent adoption
of machine learning algorithms within pharmacometrics and offer
considerations for their use. We have described one such method in
chapter 3, which can be used to support covariate selection during
classical pharmacometric analyses. Next, in chapters 4–6, we have in-
troduced the deep compartment model (DCM) framework, a reliable
and robust machine learning approach for pharmacometric analysis.
We then developed several machine learning based models to tackle
three open issues related to the clinical treatment of haemophilia A
using factor concentrates (see chapter 7–9). We concluded our experi-
mental section with the introduction of the OPTI-CLOT web-portal, an
online application that offers dosing advice to treatment teams of pa-
tients with bleeding disorders (see chapter 10). In the future, we hope
to offer the proposed machine learning methods to the haemophilia
community through this web-portal.

In the following sections, we discuss perspectives for the use of
machine learning in pharmacometrics and haemophilia A.

11.1 machine learning in pharmacometrics

11.1.1 Bringing machine learning to pharmacometrics and rare dis-
ease

The field of machine learning is often linked to the concept of Big Data.
Extracting (useful) information from large, complex data sets using
traditional methods can be burdensome, whereas machine learning
algorithms excel at extracting complex and potentially meaningful
patterns from high-dimensional data. It is therefore not surprising
that most successful implementations involve the use of massive data
sets. In contrast, applying machine learning techniques in a field
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such as pharmacometrics is much less straightforward: data is often
sparse and requirements for model interpretability and robustness
are strict. Recent interest in the adoption of machine learning in this
field is nonetheless well reflected by a significant rise in the number
of publications mentioning both topics (see figure 11.1.1).

Figure 11.1.1: Number of publications indexed by PubMed mention-
ing "pharmacometrics" and "machine learning". Last
updated: 6th of June 2024.

Several literature reviews already describe a wide range of potential
use-cases within pharmacometrics and offer future perspectives [1–
4]. Most experimental papers focus on implementations in oncology
(n = 234) or COVID-19 (n = 195), coincidentally two fields where
larger data sets are more prevalent. In contrast, significantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewersignificantly fewer ar-Only three papers

are tagged with
"haemophilia",

excluding papers
from this thesis.

ticles discuss applications within rare diseases. In this context, addi-
tional restrictions regarding the amount of data combined with an
often incomplete understanding of disease physiology complicate the
implementation of machine learning algorithms. Potential benefits can
however be transformative: recent examples include using machine
learning to support drug discovery, improve disease diagnosis, or to
personalise treatment with often expensive medication [5–7]. Aside
from a need to specifically adjust methods to meet requirements rele-
vant to rare diseases and pharmacometrics, there is also a gap between
the interest and actual adoption of machine learning. This is in part
due to a lack of flexible and user-friendly software implementations
of machine learning methods specific to pharmacometrics.

In chapter 2, we have identified three generic approaches for im-
plementing machine learning techniques in pharmacometrics. First,
machine learning can be used as a tool to support classical analyses,
for example by performing (initial) covariate screening (see chapter 3).
Second, methods have been suggested to fully learn models from data,
greatly simplifying model development [9]. Finally, hybrid models
combine machine learning with prior knowledge from pharmacomet-
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rics to improve data efficiency (for example by explicitly specifying
drug kinetics in a dynamical system; see chapter 4 and 5). In the
following sections we discuss future perspectives regarding these
three approaches in more detail. In addition, we will evaluate their
suitability to applications within rare diseases.

11.1.2 Machine learning as a tool to support pharmacometric analyses

Data Black box
Insights/

Processed data

Classical

model development

Many of the early adopters of machine learning in pharmacometrics
will likely focus on methods supporting classical analyses. This way,
the typical pharmacometrician can still rely on their own expertise
in pharmacology while benefitting from the advantages machine
learning algorithms can offer. There are two key use-cases for machine
learning in this setting: performing data pre-processing (for example
by imputing missing values, see chapter 7), or to screen data for
potentially relevant covariates (see chapter 3) [8, 10].

First, a large fraction of data is often missing in the healthcare set-
ting, which is especially the case when working with real-world data
collected from patient health records. In the low-dimensional setting
or when the covariates are strongly correlated (as is for example the
case with age, height, and body weight) it is possible to manually
describe models to impute missing data. However, the development of
such models for high-dimensional or time-series data quickly becomes
complicated. In these cases, machine learning methods such as multi-
ple imputation by chained equations (MICE), variational autoencoders
(VAE), generative adversarial networks (GANs), or diffusion models
can potentially improve the accuracy of imputed data [11–14]. An
initial evaluation of the performance of machine learning methods
for data imputation showed positive results, so further research is of
interest [10].
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Machine learning methods can also be used to generate syntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticsyntheticSynthetic data is
artificially

generated and
meant to closely

resemble real-world
data.

datadatadatadatadatadatadatadatadatadatadatadatadatadatadatadatadata, which is of great interest in the context of highly sensitive patient
data. Privacy-preserving synthetic data can be shared instead of real
data, offering a potential solution to data limitations. Smaller data
sets can be augmented with synthetic data to create richer data sets,
which is of course especially relevant within the context of rare disease
(see chapter 7). However, it is still to be explored whether generative
machine learning methods perform well on smaller data sets. Privacy
requirements will also be more strict when utilising data from patients
with rare diseases, as they are more easily traced based on certain
characteristics despite anonymisation [15].

Our efforts with regard to these challenges will be pursued as part
of the PHEMS consortium (https://phems.eu/), a research initiative
launched by the European Children’s Hospitals Organisation (ECHO)
and funded by the European Union. The consortium aims to facilitate
the development of machine learning models on data obtained from
electronic healthcare records of several European paediatric hospi-
tals using federated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learningfederated learning. Participating centres will be able to trainIn federated

learning, models are
shared rather than

data, ensuring that
sensitive

information stays
within local
institutions.

machine learning models on the data from other centres without the
need for direct access. A secondary goal of the PHEMS project is to
develop generative models that produce a synthetic version of the
data from each centre which can be shared with external partners. To
this end, we will investigate whether accurate and privacy-preserving
generative models can still be developed when data is sparse.

Second, machine learning methods can be used to speed up covari-
ate screening. Here, classical linear methods such as LASSO can be
used to identify important covariates by shrinking regression coeffi-
cients of unimportant covariates to zero [16]. More advanced machine
learning algorithms, such as random forests, relax the assumption of
linear effects and can potentially improve the identification of covari-
ates with more complex relationships. After fitting the machine learn-
ing model, AI explainability tools can be used to rank the covariates
based on model-specific importance metrics. More advanced analyses
can also be performed by visualising learned covariate effects, which
can help provide an indication of the functional forms to use when
implementing each covariate (see chapter 3). However, interpretation
of the covariate effects as represented by the explanation model is not
necessarily straightforward, especially in high-dimensional settings.
Issues arising from collinearity, confounding, or model overfitting also
complicate the use of these methods as standard pre-screening tools.
It is thus probable that users will still have to critically evaluate the

https://phems.eu/
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results of these analyses, which at minimal requires experience with
limitations and pitfalls of the specific machine learning algorithm and
explainability tool used.

11.1.3 Should pharmacometricians be replaced by machines?

Data Black box
Predictions/

Decision making

Machine learning model

?

The ultimate goal of machine learning research is to create au-
tonomous systems that continuously learn from data. Current focus is
on large language models (LLMs), chatbot-like systems that appear
to offer human-like responses to queries. Recently, researchers have
delved into the use of LLMs in the context of pharmacometrics. These
systems can be used to support users by writing code and finding
errors, summarising scientific papers, and by suggesting model com-
ponents to add [17–19]. However, some initiatives take it one step
further and use specifically trained LLM models to guide pharmaco-
metricians through the entire model development process [20]. Specific
LLMs are constructed to read input documents, create data sets, find
relevant information online, generate model code, iteratively evaluate
& improve models, and finally to simulate data for decision-making.

Initial evaluations of such a system showed large increases in the
productivity of its users, but the grim reality is that these systems
reduce the role of pharmacometricians to prompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineeringprompt engineering and ver- Prompt engineering

involves finding the
best wording to use
when querying a
LLM to get optimal
responses.

ification of decisions made by the AI. As time goes on, the actual
model development experience of pharmacometricians will diminish,
hampering their ability to detect errors made by the AI system. There
are many points along the data analysis pipeline at which the intro-
duction of errors can lead to incorrect conclusions. Since LLMs are
prone to hallucinate false information [21], the widespread implemen-
tation of these AI systems without adequate supervision can result in
real-world harm to patients. It might also take pharmacometricians
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considerable time to validate all the actions taken by the AI system
(especially so when data is automatically extracted from free-text
documents), mitigating any increases in productivity.

An alternative future involves expanding the toolset of pharmaco-
metricians with more advanced methods to promote the rate of model
development. Designing such algorithms is not straightforward as
was pointed out in chapter 1. Recent developments with respect to
NeuralODEs are nonetheless promising [22]. These differential equa-
tion based models may be able to improve extrapolation capabilities
of machine learning models by learning the dynamical system govern-
ing the observations [23, 24]. When sufficient data is available, these
models can potentially elucidate complex disease dynamics [9, 25]. A
recent extension to the method incorporates inter-individual variabil-
ity in responses, providing a measure of uncertainty to predictions
and allowing for the selection of the most likely response based on
observed data [26]. However, an important open question is whether
these methods will behave well on smaller data sets (see chapter
5). Since managing model complexity is not straightforward, Neu-
ralODEs can still learn unexpected behaviour outside of the training
data. It will thus probably be necessary to include some form of model
regularisation to improve performance, but it is not necessarily clear
what sort of an approach will be effective. In addition, when disease
physiology is sufficiently complex, it possible that the data simply
does not support the learning of the true dynamical system. More
research is therefore required to produce more reliable algorithms.

11.1.4 Combining the two approaches in hybrid models

Hybrid model

Data

Black box or Glass box

+

Mechanistic model

Predictions

Decision making

Finally, hybrid models have the potential to combine the best of
both worlds: it enables researchers to utilise their previous domain
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knowledge while using machine learning methods to simplify model
development. By incorporating prior domain knowledge, these mod-
els can improve data efficiency as the scope of the learning problem
is reduced. One example of such a hybrid model architecture is the
DCM, a model combining neural networks with compartment models
to automatically learn covariate effects from data (see chapter 4). In
contrast to NeuralODEs, we have demonstrated that the DCM can still
obtain relatively high accuracy when trained on sparse data sets (see
chapter 4 and 5). In addition, these models use the same interpretable
parameters (e.g. drug clearance and volume of distribution) as classi-
cal pharmacometric models, allowing for comparisons to prior results.
Data efficiency can be further improved by adding physiologically-
based constraints on the model parameters (see chapter 5). Results
obtained from explainable AI methods might also be more readily
interpretable as the relationship between covariates and pharmacoki-
netic (PK) or pharmacodynamic (PD) parameters are often relatively
simple. For example, the relationship between body weight and clear-
ance closely resembles a linear correlation, whereas the association
between body weight and drug concentrations follows a more com-
plex, non-linear relationship. Explanations for models that directly
predict the dependent variable are also time-dependent, further com-
plicating model interpretation. The use of specialised architectures
that are inherently interpretable (so-called glass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box modelsglass-box models) can even In contrast to a

"black box",
predictions from
glass box models
can be directly
explained based on
model structure.

be used, which as we have shown do not necessarily incur a loss of
accuracy (see chapter 5).

Hybrid models can also be used to learn unknown parts of the
dynamical system [24, 27]. A NeuralODE can for example be used to
learn absorption kinetics while explicit partial differential equations
are used to represent drug distribution and clearance as in typical
compartment models. By giving explicit meaning to the dynamics
learned by the NeuralODE, it becomes feasible to regularise the solu-
tion and to set rules so that the model produces expected behaviour.
For example, total drug concentration should always go to zero, can-
not be negative, and cannot exceed the administered dose amount.
Although these rules seem very straightforward, without constraints
there is no guarantee that the model will not learn to produce incorrect
behaviour. It will be of great interest to further develop hybrid model
applications that combine prior knowledge and machine learning
methods in innovative ways. We have developed a software pack-
age (DeepCompartmentModels.jl) that combines the DCM framework

https://github.com/Janssena/DeepCompartmentModels.jl
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with NeuralODEs in order to facilitate further research and adoption
of these techniques.

11.1.5 Future directions

There are several interesting future directions for machine learning in
pharmacometrics. First, given the advancements in NeuralODEs and
hybrid models, it is possible that practitioners will forego intermediate
methods (e.g. those supporting classical analyses) and instead directly
use machine learning based models. For example, by adding mixed-
effects estimation to the DCM framework (see chapter 6), we provide
a simple to implement alternative to classical non-linear mixed effects
models. We also suggest constructing these models in such a way
that they are inherently interpretable, facilitating the identification of
important covariates while providing the ability to critique models
based on learned effects (see chapter 5). Covariate analysis can be per-
formed in a similar way as in classical methods, but the use of neural
networks means that the selection of specific functions is not nec-
essary. Furthermore, a full covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate modelfull covariate model based approach combinedFull model

estimation involves
directly including

all candidate
covariates and
assessing their

importance based
on learned effects.

with deep ensembles can potentially be used to identify covariate
importance from a single model run (see chapter 5). These methods
could significantly reduce the time spend on model development.

Second, the more widespread implementation of techniques from
(Bayesian) causal inference would be of interest to improve the devel-
opment of pharmacometric models [1, 28, 39]. These techniques can
for example be used to compare potential outcomes of two different
treatments. This is a complex problem, seeing as generally only a
single outcome is actually observed for each patient. By representing
(known) causal relationships between variables in a directed acyclic
graph (DAG), one can perform specific interventions (e.g. give drug
X and measure response) that enable the estimation of causal effects
[37]. In chapter 7, we show that extrapolation performance of ma-
chine learning models can potentially be improved by fitting models
that follow a causal diagram. For example, it is well known that von
Willebrand factor (VWF) binds to FVIII to protect it from proteolytic
degradation [38]. In a causal model we might therefore include a
relationship between VWF and FVIII clearance but not with other
PK parameters. When explicitly not allowing such an effect to be
learned (for example by only linking specific covariates to specific
PK parameters, see chapter 5), we might prevent machine learning
models from learning spurious effects.
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Machine learning methods can also support causal discovery, for
example by learning causal relationships based on observational data
and augmenting existing causal graphs [40–42]. In this context, it is
likely beneficial to consider Bayesian methods in order to quantify
the uncertainty of learned effects. By supplying prior information
about covariate importance or even function complexity, these models
can potentially identify important covariates. When data is spare, it
is sensible to discourage the model from learning overly complex
relationships to reduce overfitting. Gaussian Processes (GPs) offer an
intuitive way of setting such priors (see chapter 1).

Third, the introduction of GPs in non-linear mixed effects models
might be of a more general interest to pharmacometricians: it is
more intuitive to specify the desired complexity of a function versus
manually composing and tuning explicit algebraic functions. By using
Bayesian non-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametricnon-parametric methods like GPs, we can perform data-driven Non-parametric

methods can make
predictions without
assuming a fixed
parameter
structure.

learning of covariate effects while obtaining posterior distributions
representing the uncertainty over their effects. These posteriors can
be used as priors in subsequent studies to enable continuous model
development. We can further facilitate such a process by supporting
models with a generative component, for example one that simulates
synthetic patients similar to the training data (see chapter 7). These
generative models can be used to augment data sets in subsequent
studies, or to identify a population PK model that was trained on a
patient population similar to a new patient to improve predictions.
The sharing of data and models in such a way would be of great
interest to improve models in the long run, especially so in the context
of rare diseases.

Finally, probabilistic methods such as GPs and neural stochastic dif-
ferential equations (NeuralSDEs) can potentially be used to learn un-
certainty over the structure of the dynamical model [26, 29]. By using
these methods, we can obtain uncertainty estimates over the inclusion
of specific model components, for example when adding additional
compartments. Interpretation of the obtained uncertainty estimates
(which are probabilities) is more straightforward than comparing
p-values, which are typically obtained during such comparisons. Pri-
ors can again be used to control model complexity and to specify
expected behaviour outside of the observed data to improve extrapola-
tion. The use of Bayesian methods in this manner gives greater control
to pharmacometricians to make decisions during model development.
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11.2 bringing machine learning to haemophilia a

11.2.1 Opportunities related to drug discovery and bleeding pheno-
type

Unlike numerous other rare conditions where therapeutic options
remain limited, the treatment of haemophilia A has seen considerable
advancements. Factor replacement therapy (and non-factor based alter-
natives) feature high efficacy and have resulted in large improvements
in quality of life. In addition, treatment is highly personalised, either
by applying PK-guided dosing or by making iterative adjustments
to dosing in response to breakthrough bleeding. Consequently, many
patients with haemophilia A are able to lead relatively normal lives.
Despite these advancements, research into haemophilia A remains
highly active, with ongoing efforts to refine current therapies, explore
novel treatment modalities (including gene therapy), and search for
biomarkers representative of the individual bleeding phenotype. Al-
though the focus of this thesis has mostly been on the use of machine
learning methods to personalise haemophilia A treatment, we will also
briefly highlight its opportunities with respect to these other research
areas.

First, machine learning algorithms can significantly accelerate drug
discovery processes by predicting how different compounds interact
with biological targets, identifying potential therapeutic candidates,
and optimising lead compounds [30]. For example, one pioneering
study in haemophilia A has utilised a machine learning framework to
predict disease severity based on the molecular structure of FVIII [31].
This model takes FVIII amino acid properties, structural relationships,
and clinical characteristics as inputs and returns the probability of
observing a severe haemophilia A phenotype. These probabilities can
be used to identify ’hotspots’ that are especially sensitive to mutations.
Similar models can be constructed that could for example learn to
predict how changes in the protein sequence of FVIII affect drug half-
lives. Such information can in turn be used to guide the design of
novel therapeutic compounds. The introduction of machine learning
in drug discovery and repurposing pipelines has high potential in the
context of rare disease. Not only would these approaches enhance the
efficiency of drug discovery, but they could also potentially reduce
the time and cost associated with bringing new therapies to market.
It will be of interest for pharmaceutical companies to invest in the
introduction of these algorithms to accelerate drug development.
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Second, one of the key capabilities of machine learning is its po-
tential to identify patterns from large-scale data sets that might be
difficult to detect using traditional statistical methods. Deep learning
methods can for example be used to analyse high-dimensional -omics
data to uncover biomarkers and predict risk of disease [33, 34]. In the
context of haemophilia A, it is well known that there is considerable
variability in bleeding outcomes between patients, even after correct-
ing for FVIII exposure [60]. Proteomics data can potentially be used
to identify biomarkers that explain these differences [35, 36]. Work-
package 10 of the SYMPHONY consortium focuses on the detection
of proteolytic signatures that correlate with differences in bleeding
phenotypes between patients with haemophilia A or von Willebrand
disease. Due to the complexity and high-dimensionality of this data,
it might be of interest to evaluate potential benefits of using machine
learning algorithms to aid such analyses.

11.2.2 Open issues for personalised treatment in haemophilia A

Population PK models have long been used as a quantitative method
to personalise the prophylactic treatment of haemophilia A patients.
In chapters 7–9 of this thesis, we have described three examples where
machine learning algorithms can be applied to improve treatment.
Specifically, we show how model extrapolation can be improved by
adopting techniques from causal inference, how to identify time-
dependent changes in FVIII clearance to improve predictions in the
perioperative setting, and finally how to predict bleeding outcomes in
response to treatment based on FVIII PK and estimated bleeding risk.
Aside from these contributions, there still are some clinical settings
where personalised treatment is complicated or where there is room
for improvement.

First, residual FVIII levels from a previous dose can affect the
measurements taken for a PK profile. Without correcting for these
residual levels, the estimated PK parameters will be biased. Although
estimates can be easily corrected by including previous doses in the
model, this information is often missing. This is especially the case
when working with (retrospective) data from health record systems:
prior doses are not available in health record systems since these were
most likely administered by the patient at home. It might therefore be
necessary to augment PK models with a probabilistic model predicting
the most likely dosage as well as its time of administration. Methods
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from the field of Bayesian Inference such as Markov Chain Monte
Carlo (MCMC) might be well suited for this problem.

Second, current population PK model are generally not suited to
predict FVIII exposure with respect to multiple different factor con-
centrates based on only a single PK profile [57]. Typically, we would
not only want to know the FVIII consumption necessary to maintain
certain target levels for one drug, but also whether switching to an
alternative drug with more favourable PK is cost-effective. Theoreti-
cally, when we correctly adjust for sources of variability in the PK of
different FVIII concentrates, we should be able to obtain reasonable
estimates of FVIII exposure for alternative drugs. To develop such a
system, we can build upon advancements from the field of machine
learning, such as the Bayesian causal inference framework suggested
in section 11.1.5. By using probabilistic machine learning methods,
we can iteratively improve models on many different data sets of
patients receiving different FVIII concentrates. Researchers can obtain
the latest model version and continue training on local data sets. After
fitting the model, updated model parameters can be shared instead
of patient data, keeping sensitive data private. By training on a large
number of such data sets, the model can learn to correct for more
diverse sources of variability, improving prediction accuracy.

Third, model development may be complicated by the limited avail-
ability of data. Since haemophilia A is a rare disease, most single
centres will not be able to collect large-scale data sets required for
complex machine learning analyses. It might therefore be of interest
to create generative models that accurately simulate synthetic patients
that are similar to those from local data sets. By sharing these gener-
ative models alongside PK models, users can identify whether their
patient is similar to those used to develop the PK model (see chapter
7). Meanwhile, the augmentation of existing data sets with synthetic
data offers an opportunity to build larger data sets to train PK models.

Coincidentally, the problems encountered within use-case three
of the PHEMS consortium (which is focused on improving a popu-
lation PK model for haemophilia A) align well with the previously
mentioned issues. The data from each participating centre is collected
during routine clinical practice, meaning that a large fraction of dosing
information at the time of FVIII measurements is expected to be miss-
ing. Furthermore, there are inherent differences between the patient
populations from each centre as well as FVIII concentrate and mea-
surement assay use. Finally, the implementation of federated learning
might be able to address the issue of data availability by allowing
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models to be trained on data from multiple centres. It will of interest
to determine whether generalisable solutions to these problems can
be found as they will benefit the broader research community.

A final hurdle is the selection of appropriate FVIII target levels
to reduce bleeding rates on an individualised basis. In chapter 9 we
address this issue by using repeated time-to-event (RTTE) models
to predict individual bleeding risk. In the current clinical landscape,
physicians frequently base treatment decisions on expert opinion re-
garding the patient’s bleeding phenotype rather than generic FVIII
target levels. This phenotype is difficult to define concisely, and is
often a subjective assessment of joint state, bleeding frequency, the
severity and types of bleeding, physical activity levels, risk-aversion
of the patient, and the current treatment regimen. Rather than directly
attempting to quantify the bleeding phenotype, RTTE models can
estimate the bleeding risk based on reported bleeding and treatment
information. Not only can these models be used to compare patients
based on differences in bleeding risk, they can also be used to simulate
individual bleeding outcomes in response to different treatment regi-
mens. When combined with the aforementioned causal population PK
models, it might also be possible to estimate the effect of switching
treatment on bleeding outcomes, for example when switching from
standard to extended half-life concentrates or non-factor based thera-
pies. Since we can directly compare treatment options based on FVIII
consumption, these tools can be used to perform more comprehensive
cost-effectiveness analyses and might provide stronger rationale for
changing treatment. Additionally, such an approach supports shared
decision making, as selection of the optimal treatment regimen based
on bleeding outcomes is more illustrative to patients and healthcare
professionals. It would be of great interest to clinically validate the
performance of the use of RTTE-based methods for the optimisation
of treatment.

11.2.3 Improving the access to personalised treatment in clinical
practice

Although several clinical guidelines advise the use of PK-guided dos-
ing to personalise treatment of patients with haemophilia A, its actual
clinical adoption is somewhat lacking [49]. There are several factors
that contribute to this finding. Importantly, ambiguities regarding
measured FVIII levels or model predictions mean that expert pharma-
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cologists are frequently required to aid in interpreting and evaluating
PK profiles. The resulting process can be time-intensive, and requires
specific expertise not available in all treatment centres. In chapter 10,
we have introduced the OPTI-CLOT web-portal, a web-application
that offers free access to dosing advice for treatment teams of patients
with rare bleeding disorders. Here, patient data is shared with the
external platform and tailored dosing advice is provided by a team
of expert pharmacometricians. This web-portal currently provides
dosing advice for patients with haemophilia A or B and von Wille-
brand disease, and adoption in the Netherlands has been promising.
The uptake of the web-portal might be further enhanced by reducing
the burden of entering relevant patient information, for example by
directly interfacing with electronic health record systems to automat-
ically extract data. By developing the web-portal, we hope to bring
novel techniques closer to actual clinical adoption. In the future, we
aim to offer dosing advise based on the patient’s individual bleeding
phenotype, for example through the use of RTTE-based models.

11.3 conclusions

The work undertaken as part of this thesis supports the adoption of
machine learning algorithms in the field of pharmacometrics. Princi-
pally, we have introduced the DCM framework, which is a reliable and
robust machine learning based approach to predict drug exposure
and effects. Next, we have shown that machine learning methods
can achieve clinical benefits by tackling issues with respect to the
personalisation of treatment for patients with haemophilia A. Perhaps
one of the most important contributions is the development of a RTTE
model to predict the individual bleeding risk in response to treatment.
This method has the potential to revolutionise the approach taken
to personalised treatment in haemophilia A by focusing on bleeding
outcomes rather than just FVIII levels. To conclude, this thesis can
hopefully serve as an example for the implementation of machine
learning in the context of rare diseases in a more general sense. Our
focus has been on improving model performance in sparse data set-
tings, and is likely of interest to assist the treatment of patients with
other rare conditions.

https://opticlot.nl/
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Part VI

A P P E N D I X





D ATA AVA I L A B I L I T Y

Personal data of patients collected as part of clinical trials, retrospec-
tive analyses, or other sources of data that are used in experiments or
are otherwise mentioned as part of this thesis are private, in line with
each patient’s legal rights concerning their privacy. All simulated data
and model code is made available as part of online repositories hosted
on GitHub. An overview of the corresponding links are replicated
below:

• Chapter two:
https://github.com/Janssena/SI-AIEP-paper

• Chapter three:
https://github.com/Janssena/pkSHAP

• Chapter four:
https://github.com/Janssena/DeepCompartmentModels.jl/tree/old

• Chapter five:
https://github.com/Janssena/dcm-constrained

• Chapter six:
https://github.com/Janssena/ME-DCM.jl

• Chapter seven:
https://github.com/Janssena/DeepFVIII.jl

• Chapter eight:
https://github.com/Janssena/PerioperativeFVIII

• Chapter nine:
https://github.com/Janssena/RTTE-FVIII
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S U M M A RY

general introduction

In chapter 1, we provide background on haemophilia A, a rare X-
linked bleeding disorder. Individuals with haemophilia A have an
elevated risk of (spontaneous) bleeding and those with severe bleed-
ing phenotypes require life-long prophylactic treatment in order to
counteract debilitating joint damage and life-threatening bleeding.
We discuss the history of treatment and the role of pharmacokinetics
(PK) in the personalisation of prophylactic treatment. We end with
presenting future perspectives for the treatment of haemophilia A,
including developments in non-factor replacement therapies.

In the second part of the introduction we discuss notable devel-
opments within the field of machine learning, and elaborate on its
potential for pharmacometric applications. We introduce the main
three machine learning algorithms relevant to this thesis: random
forests, neural networks, and Gaussian Processes. We end the chap-
ter with a discussion of the concept of overfitting and the domain
specific challenges hindering the adoption of machine learning in
pharmacometrics. The main challenges are related to the sparsity and
irregularity of observed data as well as the strict reliability and in-
terpretability requirements relevant to medical applications. These
barriers underline the need for algorithms specifically adapted to the
pharmacometric setting.

part i : machine learning in pharmacometrics

In chapter 2, we discuss recent applications of machine learning algo-
rithms within the context of pharmacometrics. We review the recent
literature regarding the use of machine learning to support data prepa-
ration, hypothesis generation, and predictive modelling. At the end of
each discussion, we provide important considerations before apply-
ing machine learning for the specified purpose. With respect to data
preparation, we mainly identify methods supporting missing data
imputation in high-dimensional or otherwise complex data sets. For
hypothesis generation, most published research discusses the use of
machine learning algorithms for performing covariate screening. This
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is especially useful in high-dimensional settings, as is for example the
case with genomics data. We then discuss the use of machine learning
for predictive modelling. Here, we highlight the potential of differen-
tial equation based methods, such as NeuralODEs and hybrid models.
We end with a discussion on model validation, which should play a
principal role in any project involving machine learning. Since most
algorithms are prone to overfitting, model biases and generalisation
should be evaluated thoroughly. This is especially important in the
context of medical applications, where it is important that the model
can be trusted to not make incorrect predictions that can hurt patients.

In chapter 3, we propose a more advanced method for performing
covariate screening. Instead of only ranking the covariates based on
a measure of feature importance, we used explainable AI tools to
visualise the relationships between covariates and PK parameters as
implicitly learned by a machine learning model. To showcase the use
of such a method, we fit a random forest model to predict individual
estimates of PK parameters obtained from a retrospective data set of
119 haemophilia A patients who have undergone surgery. We then
used SHapley Additive exPlanations (SHAP) to visualise the learned
covariate effects from the random forest model. These visualisations
can provide the user with an initial set of hypotheses for the imple-
mentation of covariates and helps to detect those with potentially
unimportant effects (e.g. due to data artefacts). We found that the
resulting visualisations adhered to our expectations regarding the
effect of each covariate given prior knowledge on FVIII PK.

part ii : deep compartment models

In chapter 4, we introduce deep compartment models (DCM), a mod-
elling framework that combines deep learning with universal differ-
ential equations. In this paper, we propose using neural networks to
predict the parameters of a differential equation (e.g. a compartment
model). This framework simplifies model development by automating
the implementation of covariates, enables reliable extrapolation to
new dosing regimens, and offers interpretable predictions (e.g. PK
parameters). We perform a simulation experiment to show that this
model can still perform well in sparse data settings, especially when
initial guesses for the PK parameters are provided. We then compare
its performance to a previous population PK model which was de-
veloped on a retrospective data set of 119 haemophilia A patients
undergoing surgery. The accuracy of predictions from both models
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was compared on an external perioperative data set of 62 haemophilia
A patients collected during the OPTI-CLOT clinical trial. Here, we
found that the performance of the DCM matched that of the previous
model, even though it was developed in only a fraction of the time
(population PK models often require weeks of development).

In chapter 5, we build upon the DCM framework by proposing
the use of model constraints to improve performance on very sparse
data sets. We show that without constraints, these models are capa-
ble of predicting unrealistic concentration-time curves in small data
sets. Setting bounds on the PK parameters or using global parame-
ters for hard-to-identify parameters improves accuracy and prevents
the learning of unrealistic models. These results make the method a
more promising alternative to classical non-linear mixed effects mod-
els, while subverting the typical assumption that machine learning
methods require large data sets to achieve good performance. We
also show that standard neural network architectures risk learning
false effects in the presence of unimportant covariates. To tackle this
issue, we suggest linking covariates to specific PK parameters (for
example based on causal graphs). An added benefit is that the model
becomes fully interpretable, since covariate effects can be isolated and
visualised. This greatly improves model trust, while covariate effects
can be critiqued to improve model performance.

In chapter 6, we propose an approach for mixed-effects estima-
tion using the DCM. In this context, we compare the performance
of classical first-order approximations of the marginal likelihood to
a Variational Inference (VI) based method. We perform a simulation
experiment to show that the principal method for estimating mixed
effects in non-linear mixed effects model, the first-order conditional
estimation (FOCE) method, results in erratic behaviour during optimi-
sation when using the DCM. In contrast, VI results in a fast and stable
convergence to accurate estimates of the population parameters. We
repeat our experiment on real-world data from the OPTI-CLOT clini-
cal trial, where results from the synthetic experiments are replicated.
The resulting modelling framework represents a promising alternative
to classical non-linear mixed effects models that can directly learn
covariate effects from data.
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part iii : machine learning for improving the treatment

of haemophilia a patients

In chapter 7, we apply the DCM to predict FVIII PK in haemophilia A
patients in the prophylactic setting. Our aim was to adopt techniques
from causal inference in order to improve extrapolation performance,
specifically when switching recombinant FVIII (rFVIII) concentrates.
We first defined the causal graph representing the relationships be-
tween variables relevant to FVIII PK. Based on this graph, we fit
a DCM to data of 103 severe haemophilia A patients treated using
lonoctocog alfa. Next, we used an external data set of 40 patients to
evaluate model performance. Importantly, patients in this data set re-
ceived different rFVIII concentrates (octocog alfa and turoctocog alfa),
measured using a different assay (one-stage instead of chromogenic
assay). In addition, this data set had a high rate of missing data for
von Willebrand factor antigen (VWF:Ag) levels. The model was thus
augmented with components that corrected for differences between
rFVIII concentrates and measurement assays. The model was also
augmented with a generative component to impute missing values.
The resulting model achieved higher accuracy on the external data
set compared to previous models specifically trained on similar data.
These results indicate that the adoption of techniques from causal
inference might be beneficial for the development of population PK
models. Specifically, we show that resulting models can potentially be
used to estimate drug exposure of different rFVIII concentrates based
on a single PK profile.

In chapter 8, we describe a population PK model that can be used
to predict FVIII exposure during and after medical procedures. To this
end, we use the method described in chapter 3 to find covariates that
were predictive of differences in FVIII PK between the prophylactic
and perioperative setting. The perioperative model corrects individual
PK parameter estimates from the prophylactic setting to better match
FVIII PK after surgery. We found that perioperative FVIII clearance
was generally lower compared to the prophylactic setting, with co-
variates related to the complexity of the procedure indicating larger
decreases in clearance. Next, we found that there were time-related
discrepancies between model predictions and observed FVIII levels.
We thus also fitted subject-specific Gaussian Processes to capture po-
tential time-dependent changes in FVIII clearance. We found that
roughly half of patients presented with potentially relevant changes
(>15%) in FVIII clearance. Effects were highly individual, although
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larger changes in clearance were generally observed when subjects
underwent more complex medical procedures. The resulting model
depicted markedly improved prediction accuracy compared to the
typical approach of using PK parameters from the prophylactic setting
(mean absolute percentage error of 10.3% versus 26.3%). This study
shows that the a priori selection of optimal postoperative treatment
regimens is complicated by the presence of inter-individual variability
in the response to surgery (in terms of changes in PK) as well as
time-dependent effects on FVIII clearance. The proposed approach
can be used to optimise treatment in real-time, although frequent
measurement of FVIII levels is likely still required.

In chapter 9, we describe the development of a repeated time-to-
event (RTTE) model that can be used to personalise treatment of
haemophilia A patient based on bleeding risk. Typically, personalisa-
tion of treatment is achieved through PK-guided dosing, where the
optimal dosing regimen is determined based on drug exposure and
pre-specified FVIII target levels. In this work, we suggest using RTTE
models to estimate the individual bleeding risk and to use this esti-
mate to simulate projected annual bleeding rates based on a specific
dosing regimen. This enables the selection of optimal treatment based
on bleeding outcomes rather than just FVIII (target) levels. To improve
upon previous models, we fit multiple RTTE models to predict risk
for specific bleeding categories (damage-causing and nuisance bleeds),
and fit the random effects using a Gaussian mixture model to learn
the variability in the bleeding risk for patients with low, medium,
and high bleeding frequencies. We fit the model to a data set of 264

severe haemophilia A patients with a median follow-up time of 881

days and 3106 total observed bleeds. Model evaluation showed that
a large proportion (>70%) of median projected bleeding rates were
within one bleed of the true observed bleeding rate. We then showcase
how the method can be used to compare the bleeding outcomes of
three alternative dosing regimens for a single patient. Here we see
that different dosing regiments with similar total weekly rFVIII con-
sumption can nonetheless result in different outcomes based on the
timing of specific doses. In conclusion, the ability to select the optimal
dosing regimen based on bleeding outcomes introduces an exciting
new paradigm for the personalised treatment of haemophilia A.
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part iv : the opti-clot web-portal

In chapter 10, we introduce the OPTI-CLOT web-portal, a free web
application that enables treatment teams of patients with rare bleeding
disorders to request dosing advice. The web-portal enables the secure
transfer of patient information after which a team of OPTI-CLOT
pharmacometricians create an initial report containing the individually
tailored dosing advice. The requesting team can discuss the options
with their patient and can inquire about alternative dosing regimens
if so desired. The final report is stored in the web-portal, so that the
complete history of previous advice is always available to all members
of the treatment team. In the future, we aim to also provide dosing
advice based on individual bleeding phenotypes. In addition, we
hope to reduce the burden of entering data by automatically extract
necessary patient information from electronic health record systems.
This way, we hope to increase the adoption of PK or PD-guided dosing
for patients with rare bleeding disorders.

general discussion

Finally, in chapter 11, we review the most important findings dis-
cussed in this thesis and offer perspectives. We provide an overview
of the approaches for implementing machine learning algorithms in
pharmacometrics and discuss benefits and limitations. We highlight
the potential of hybrid methods, where machine learning algorithms
are combined with prior knowledge of pharmacometrics to improve
prediction accuracy and data efficiency. The deep compartment model
is one such method, and work performed in this thesis support the
method as a reliable and robust alternative to classical non-linear
mixed-effect models.

Next, we discuss current open issues for the personalised treat-
ment of haemophilia A and offer insights into machine learning based
approaches that could offer solutions. Several of these issues will
be tackled as part of the PHEMS consortium, a research initiative
launched by the European Children’s Hospitals Organisation (ECHO).
We hope to bring these and other novel methods for the personalisa-
tion of treatment of patients with haemophilia A to the OPTI-CLOT
web-portal in order to facilitate their adoption in clinical practice.

To conclude, we have shown how the use of machine learning
algorithms can result in clinical benefits, and hopefully inspire others
to implement similar algorithms in the context of other rare diseases.



S A M E N VAT T I N G

algemene introductie en doel van het proefschrift

In hoofdstuk 1 geven we achtergrondinformatie over hemofilie A,
een zeldzame bloedstollingsstoornis waarbij patiënten een tekort heb-
ben aan stollingsfactor VIII. De ziekte is X-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebondenX-chromosoom gebonden, wat Het gen voor factor

VIII bevindt zich op
het X-chromosoom,
en mannen (XY)
hebben maar een
enkele kopie van het
gen en dus een
grotere kans op
fouten.

inhoudt dat de ziekte vooral mannen treft. Mensen met hemofilie
A hebben een verhoogd risico op (spontane) bloedingen en hebben
levenslange behandeling nodig om gewrichtsschade en levensbedrei-
gende bloedingen te voorkomen. De meeste patiënten worden behan-
deld met kunstmatige vormen van factor VIII (zogeheten ’recombinant’
factor VIII concentraten) om te zorgen dat het bloed weer kan stol-
len om eventuele bloedingen te stoppen (on demand behandeling).
Patiënten die frequent bloeden worden ’profylactisch’ (preventief)
behandeld. Dit houdt in dat de patiënt enkele keren per week factor
VIII ’intraveneus’ (in de aderen) moet toedienen om het risico op bloe-
dingen te verlagen. Dit wordt vooral bij jonge kinderen als moeilijk
of vervelend ervaren. In Nederland valt het overgrote deel van de
medicatie die bij hemofilie A wordt toegediend onder de categorie
dure geneesmiddelen.

Naast ongemak bij het toedienen van medicatie en de hoge kosten
van de behandeling zijn ook grote verschillen in het effect van de
toegediende factor VIII concentraten tussen patiënten een probleem.
Patiënten die dezelfde hoeveelheid medicijn per kilogram lichaams-
gewicht krijgen kunnen verschillen in de concentratie van factor VIII
in het bloed, wat vervolgens leidt tot verschillen in de effectiviteit.
Daarnaast kunnen er ook verschillen zijn in het bloedingsrisico van
patiënten, zelfs wanneer de concentratie van factor VIII in het bloed
vergelijkbaar is: de ene patiënt bloedt wel bij een lage concentratie
en een ander niet. Dit laat zien dat het belangrijk is om voor iedere
patiënt een behandeling op maat op te stellen waarbij een op de
persoon-gerichte dosering en doseerfrequentie wordt vastgesteld. Bij
het vaststellen van deze persoonlijke behandelschema’s wordt gebruik
gemaakt van de ’farmacokinetiek’ (PK; Engels pharmacokinetics). De
PK beschrijft de processen van absorptie, verdeling en klaring (af-
braak/uitscheiding) van geneesmiddelen in het lichaam en wordt
gebruikt om met behulp van wiskundige modellen de concentratie
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van medicatie in het bloed te voorspellen. Deze methode wordt in
Nederland bij de behandeling van hemofilie A met factor VIII concen-
traten veel toegepast.

In dit proefschrift wordt onderzocht of de toepassing van machinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachinemachineMachine learning is
een vorm van

kunstmatige
intelligentie waarbij

wiskundige
modellen worden

gebruikt die
zelfstandig van

gegevens kunnen
leren om zo beter te

presteren op een
bepaalde taak.

learninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearninglearning technieken de persoonsgerichte behandeling van patiënten
met hemofilie A kan verbeteren. Onze focus is hierbij specifiek op het
gebruik van zulke technieken voor ’farmacometrische’ toepassingen.
De farmacometrische wetenschap houdt zich bezig met de relatie tus-
sen de doseringen van een geneesmiddel, de concentratie in het bloed
(de PK, zoals hierboven beschreven) en het effect op de ziekte (far-
macodynamiek, PD; Engels pharmacodynamics). Het is belangrijk om
rekening te houden met de individuele PK en PD gezien het de keuze
voor de juiste dosering voor de juiste patiënt met wetenschappelijk
bewijs kan ondersteunen. Het gebruik van machine learning technieken
in deze context maakt het mogelijk om complexere relaties bloot te
leggen en zo de behandeling te verbeteren.

In het eerste en tweede deel van het proefschrift (hoofdstuk 2–6)
richten we ons op de ontwikkeling van methodes die betrouwbare
voorspellingen kunnen geven wanneer data schaars is. Machine learning
methodes worden vaak in verband gebracht met het concept van
big databig databig databig databig databig databig databig databig databig databig databig databig databig databig databig databig data, waarbij het succes van deze methodes bepaald wordt doorBij big data zijn

grote hoeveelheden,
vaak complexe

gegevens
beschikbaar die

moeilijker te
analyseren zijn met
klassieke statistische

methodes.

de hoeveelheid data die beschikbaar is. Bij zeldzame aandoeningen
zoals hemofilie is er per definitie weinig data beschikbaar omdat de
prevalentie van de ziekte laag is. Om machine learning in deze context
te kunnen gebruiken zijn er dus specifiek ontwikkelde methodes
nodig. Daarnaast is het belangrijk dat deze methodes betrouwbaar
en interpreteerbaar zijn, vooral wanneer deze gebruikt worden voor
medische toepassingen. De meeste machine learning modellen zijn een
zogeheten black-box, wat betekent dat de innerlijke werking van deze
modellen onbekend is. Het is dus belangrijk om vast te stellen of
het model nuttige informatie geleerd heeft en correcte voorspellingen
geeft.

In deel drie van het proefschrift (hoofdstuk 7–9) focussen we op
drie aspecten van de behandeling van hemofilie A waar de toepassing
van machine learning technieken kan leiden tot verbeteringen.

Ten slotte introduceren we in deel vier (hoofdstuk 10) het OPTI-
CLOT webportaal, een website waar we behandelaren van patiënten
met zeldzame bloedstollingsstoornissen persoonlijke behandeladvie-
zen aanbieden.
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deel i : machine learning in pharmacometrics

In hoofdstuk 2 worden recente toepassingen van machine learning me-
thodes binnen de farmacometrie besproken. We behandelen de recente
literatuur over het gebruik van machine learning met betrekking tot de
voorbereiding van datasets vóór analyse, het generen van hypotheses,
en de ontwikkeling van modellen. Met betrekking tot de voorbereiding
van datasets identificeren we voornamelijk methodes die ontbrekende
gegevens kunnen invullen om zo een dataset compleet te krijgen. Bij
het genereren van hypotheses zien we dat machine learning technieken
gebruikt kunnen worden om belangrijke ’covariaten’ (voorspellers
zoals lichaamsgewicht of leeftijd) die gerelateerd zijn aan de uitkomst
van interesse, zoals factor VIII concentraties, te vinden. Dit is vooral
handig wanneer er een groot aantal covariaten gescreend moeten
worden: machine learning methodes kunnen bijvoorbeeld snel de tien
belangrijkste covariaten identificeren die door de onderzoeker verder
getoetst kunnen worden. Vervolgens bespreken we het gebruik van
machine learning voor het ontwikkelen van farmacometrische modellen.
Hier benadrukken we de potentie van methodes gebaseerd op diffe-
rentiaalvergelijkingen, zoals NeuralODEs en hybride modellen, die
mogelijk efficiënter met de beschikbare gegevens om kunnen gaan.

Ten slotte eindigen we dit hoofdstuk met het bespreken van manie-
ren om machine learning modellen te valideren. Dit is van groot belang,
aangezien deze modellen complexe verbanden kunnen leren/beschrij-
ven die niet per se de realiteit weerspiegelen. Zo kan een machine
learning model heel goed werken op een specifieke dataset door sim-
pelweg te onthouden wat de uitkomst is dat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoortdat bij elk voorbeeld hoort. Wan- Dit concept staat

bekend als
’overfitting’, waarbij
het model compleet
is toegespitst op de
specifieke dataset.

neer het model in de praktijk gebruikt wordt heeft het deze nieuwe
gegevens vaak nog niet eerder gezien en zullen voorspellingen waar-
schijnlijk incorrect zijn. Een uitgebreide evaluatie van machine learning
modellen is met name belangrijk in de context van medische toepas-
singen, waar het cruciaal is dat het model betrouwbare voorspellingen
maakt die geen schade aan patiënten toebrengen.

In hoofdstuk 3 presenteren we een geavanceerdere methode om
de relatie tussen covariaten en PK parameters te visualiseren. Deze
methode kan worden gebruikt om de effecten van covariaten bloot Explainable AI

modellen proberen
voorspellingen van
een ander machine
learning model uit
te leggen.

te leggen en zo verschillen tussen patiënten te verklaren. In plaats
van alleen de covariaten te rangschikken op basis van een maat voor
hoe belangrijk deze zijn in het model (zoals bij andere methodes),
gebruiken wij zogeheten explainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AIexplainable AI methodes om de covariaat
effecten te visualiseren zoals deze impliciet door een machine learning
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model zijn geleerd. Om het gebruik van een dergelijke methode te
illustreren, hebben we een random forest model (een machine learning
methode) ontwikkeld die individuele schattingen van PK parameters
voorspeld op basis van een retrospectieve dataset van 119 hemofilie A
patiënten die een operatie hebben ondergaan. Vervolgens gebruikten
we ’SHapley Additive exPlanations’ om de geleerde covariaat effecten
van het random forest model te visualiseren. Deze visualisaties kunnen
onderzoekers helpen om mogelijk belangrijke covariaten te detecteren.
We constateerden dat de resulterende visualisaties overeenkwamen
met onze verwachtingen van de effecten van de geteste covariaten op
basis van eerdere kennis over de PK van factor VIII.

deel ii : deep compartment models

In hoofdstuk 4 introduceren we het ’diepe compartimentenmodel’
(DCM; Engels deep compartment model), een techniek voor het ont-
wikkelen van farmacometrische modellen waarbij neurale netwer-
ken gecombineerd worden met universele differentiaalvergelijkin-
gen. In dit hoofdstuk onderzoeken we de toepassing van deze ma-
chine learning modellen om bijvoorbeeld de PK parameters van een
compartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodelcompartimentenmodel te schatten. Deze aanpak vereenvoudigt de ont-Een compartimen-

tenmodel versimpelt
het lichaam in

compartimenten
(zoals de maag en

het bloed) om zo de
spreiding van een
geneesmiddel door

het lichaam
schematisch weer te

geven.

wikkeling van modellen door de relatie tussen covariaten en PK pa-
rameters automatisch te leren op basis van patiëntgegevens, maakt
betrouwbare extrapolatie naar nieuwe doseringsregimes mogelijk en
biedt bovendien interpreteerbare voorspellingen (de voorspelde PK
parameters van het geneesmiddel kunnen bijvoorbeeld vergeleken
worden met eerder onderzoek). We voeren een simulatie-experiment
uit om te laten zien dat dit model nog steeds goed kan presteren in
situaties waarbij slechts een beperkte hoeveelheid patiëntgegevens
beschikbaar zijn. Vervolgens vergelijken we de prestaties van onze
techniek met een eerder gepubliceerd populatie PK model. Beide mo-
dellen zijn ontwikkeld op basis van een retrospectieve dataset van
119 hemofilie A patiënten die een operatie hebben ondergaan. De
nauwkeurigheid van voorspelde factor VIII concentratie voorspellin-
gen van beide modellen wordt bepaald op basis van gegevens van een
externe perioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieveperioperatieve dataset van 62 hemofilie A patiënten, verzameldPerioperatief

verwijst naar de tijd
rond een operatie.

tijdens het prospectieve OPTI-CLOT onderzoek. Hier vonden we dat
de voorspellingen van het DCM minstens even accuraat waren als
die van het eerdere model. Een voordeel van het DCM was dat het
echter in een veel kortere tijd ontwikkeld kon worden vergeleken met
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de gemiddelde tijd dat wordt besteed aan de ontwikkeling van een
(klassiek) populatie PK model.

In hoofdstuk 5 bouwen we voort op het DCM. Binnen het model
maken we het mogelijk om grenzen aan te geven voor de PK pa-
rameters zodat deze binnen realistische waardes blijven. Zo is het
gemiddelde bloedvolume van een volwassene tussen de vier tot zes
liter, en kan het dus nuttig zijn om het model tegen te houden wanneer
deze voorspellingen maakt die lager zijn dan bijvoorbeeld één liter.
Daarnaast maken we het mogelijk om een enkele waarde voor de PK
parameters te schatten voor alle patiënten wanneer een parameter
moeilijk te identificeren is op basis van de gebruikte dataset. We laten
zien dat deze aanpak nodig kan zijn om onrealistische voorspellingen
te voorkomen wanneer er beperkte gegevens beschikbaar zijn. De
resultaten van deze studie laten zien dat het gebruik van zulke beper-
kingen het DCM een veelbelovend alternatief maakt voor klassieke
populatie PK modellen. Daarnaast is het duidelijk dat het niet nodig
is om de beschikking te hebben over een grote dataset (zoals bij big
data) om het DCM goed te laten presteren.

In dit hoofdstuk laten we ook zien dat standaard neurale netwer-
ken het risico lopen om valse effecten te leren wanneer onbelangrijke
covariaten in het model gebruikt worden. Om dit probleem aan te
pakken stellen we voor om de covariaten te koppelen aan specifieke
PK parameters. Deze connecties kunnen gebaseerd worden op eer-
dere kennis. Zo is het bekend dat een ander eiwit in het bloed, von
Willebrand factor, kan binden aan factor VIII om het vervolgens te
beschermen tegen afbraak. Von Willebrand factor heeft dus een effect
op de klaring van factor VIII, en dit soort effecten kunnen specifiek
worden toegevoegd aan het model. Een bijkomend voordeel van deze
aanpak is dat het model volledig interpreteerbaar wordt, aangezien
de relatie tussen elk covariaat en de PK parameters geïsoleerd en gevi-
sualiseerd kan worden. Dit vergroot het vertrouwen in het model, en Bij een mixed-effect

model worden
verschillen in PK
parameters
beschreven als een
gemiddelde waarde
plus het effect van
covariaten (het
fixed-effect) en een
patiënt-specifiek
effect (het
random-effect)

bevordert de adoptie voor medische toepassingen gezien gebruikers
kunnen verklaren waarom het model specifieke voorspellingen maakt.

In hoofdstuk 6 beschrijven we een verdere verbetering van het
DCM door het mogelijk te maken om de verschillen tussen pati-
ënten te beschrijven door middel van ’mixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effectsmixed-effects’. In ’fixed-effect’
modellen (zoals het originele DCM) is de voorspelling voor twee pa-
tiënten hetzelfde als de waarde van de covariaten gelijk zijn. Vaak
kunnen deze covariaten niet alle verschillen tussen patiënten verkla-
ren en wordt er een random-effect aan het model toegevoegd om de
overgebleven variatie te bepalen. In de praktijk kan deze informatie
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vervolgens gebruikt worden om voorspellingen te corrigeren op basis
van gemeten medicijn concentraties. Wanneer factor VIII spiegels bij-
voorbeeld sneller dalen dan voorspeld, kan het random-effect gebruikt
worden om de voorspelde factor VIII klaring te verhogen om zo een
individuele schatting te krijgen die beter bij de metingen past. De
resulterende individuele PK parameters kunnen vervolgens gebruikt
worden om nauwkeurigere simulaties uit te voeren van de gevolgen
van verschillende behandelingen. In dit hoofdstuk vergelijken we
de prestaties van klassieke statische methodes voor het schatten van
random effects met een techniek uit machine learning: ’Variational
Inference’. We voeren een simulatie-experiment uit om te laten zien
dat de meestgebruikte klassieke methode, de ’first-order conditional
estimation’ (FOCE) methode, onvoorspelbaar gedrag vertoont wanneer
het gebruikt wordt in combinatie met het DCM. Daarentegen is het
gebruik van Variational Inference sneller, stabieler en nauwkeuriger.
We herhalen ons experiment op klinische gegevens verzameld tijdens
het prospectieve OPTI-CLOT onderzoek, waar we de resultaten van
de simulatie-experimenten konden repliceren. Deze uitbreiding van
het DCM maakt het een veelbelovender alternatief voor klassieke
populatie PK modellen.

deel iii : machine learning voor het verbeteren van de

behandeling van patiënten met hemofilie a

In hoofdstuk 7 passen we het DCM toe om de PK van factor VIII te
voorspellen bij hemofilie A patiënten tijdens profylactische behande-
ling. Het doel van dit onderzoek was om te evalueren of het mogelijk
is om een model te ontwikkelen dat kan corrigeren voor verschillen
tussen recombinant factor VIII concentraten. Dit zou het mogelijk
kunnen maken om het verloop van de bloedconcentratie in de tijd
van een nieuw middel te voorspellen op basis van de gegevens van
een middel dat eerder gebruikt is. Wanneer de bloedconcentraties van
het huidige middel onvoldoende zijn, zou dit model gebruikt kun-
nen worden om een ander middel te selecteren dat wel de gewenste
blootstelling heeft. Om dit model te ontwikkelen hebben we eerst
een causaal diagram opgesteld die alle (inter)relaties tussen relevante
covariaten weergeeft. Op basis van de relaties in dit diagram hebben
we een DCM ontwikkeld met behulp van gegevens van 103 ernstige
hemofilie A patiënten die behandeld werden met lonoctocog alfa
(een specifiek factor VIII concentraat). Vervolgens gebruikten we een
externe dataset van 40 patiënten om de nauwkeurigheid van voorspel-
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lingen te evalueren. Een belangrijk gegeven in deze vergelijking was
dat patiënten in deze externe dataset andere factor VIII concentraten
kregen toegediend (octocog alfa en turoctocog alfa). Bovendien werd
de factor VIII concentratie bepaald meteen andere laboratorium test,
de zogeheten ’one-stage’ test in plaats van de chromogene test. Het
model werd daarom uitgebreid met componenten die corrigeerden
voor verschillen tussen de verschillende factor VIII concentraten en
meetmethodes. Ten slotte ontbraken in deze dataset voor een groot
deel van de patiënten informatie over de von Willebrand factor bloed-
concentraties. Om dit probleem op te lossen hebben we een generatiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratiefgeneratief Generatieve

modellen kunnen
kunstmatige data
creëren dat lijkt op
echte data.
ChatGPT is een
voorbeeld van een
generatief model.

component aan ons model toegevoegd dat ontbrekende waardes voor
alle covariaten in het model in zou kunnen vullen. Het resulterende
model was in staat de factor VIII concentraties in de externe dataset
met een hoge nauwkeurigheid te voorspellen en liet een verbetering
zien in vergelijking met eerdere modellen die specifiek op soortgelijke
data waren ontwikkeld. Deze resultaten laten zien dat het inderdaad
mogelijk is om modellen te ontwikkelen die gebruikt kunnen wor-
den om de PK van meerdere verschillende factor concentraten te
voorspellen.

In hoofdstuk 8 beschrijven we een populatie PK model dat kan
worden gebruikt om factor VIII concentraties tijdens en na medische
ingrepen te voorspellen. Daartoe gebruiken we de methode beschre-
ven in hoofdstuk 3 om covariaten te vinden die voorspellend waren
voor verschillen in factor VIII PK parameters tijdens profylaxe en
na een operatie. Het perioperatieve model corrigeert individuele PK
parameters geschat op basis van profylactische gegevens zodat voor-
spellingen beter overeenkomen met factor VIII concentraties na een
medische ingreep. Met behulp van dit model kunnen patiënten na een
operatie beter ingesteld worden om gewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentratiesgewenste factor VIII concentraties Er zijn in
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te behalen. Onze resultaten gaven aan dat de perioperatieve factor
VIII klaring over het algemeen lager was na een medische ingreep,
waarbij covariaten gerelateerd aan de complexiteit van de procedure
grotere dalingen in de klaring lieten zien. Vervolgens ontdekten we
dat er verschillen waren tussen voorspellingen van het model en de
waargenomen factor VIII concentraties op specifieke tijdstippen na
de operatie. Daarom hebben we ook per patiënt een Gaussian Process
model (een machine learning methode) gebruikt om mogelijke verande-
ringen in factor VIII klaring over de tijd te identificeren. We vonden
dat ongeveer de helft van de patiënten potentieel relevante verande-
ringen (>15%) in factor VIII klaring vertoonden na de operatie. Dit
effect kon sterk variëren tussen patiënten. Over het algemeen wer-
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den er grotere veranderingen in de klaring waargenomen wanneer
patiënten complexere medische ingrepen ondergingen. Ons model
resulteerde in een aanzienlijke verbetering van de nauwkeurigheid
van factor VIII voorspellingen in vergelijking met de typische aanpak
waarbij profylactische PK parameters worden gebruikt (gemiddelde
absolute percentuele fout van 10,3% versus 26,3%). Deze studie toont
aan dat de selectie van de optimale perioperatieve behandeling vóór
aanvang van de ingreep wordt bemoeilijkt door de aanwezigheid van
inter-individuele variabiliteit in de PK parameters en veranderingen
in factor VIII klaring over de tijd. De voorgestelde aanpak kan wor-
den gebruikt om de behandeling met factor VIII na een medische
ingreep te optimaliseren, hoewel frequente meting van factor VIII
concentraties in het bloed waarschijnlijk nog steeds vereist is.

In hoofdstuk 9 beschrijven we de ontwikkeling van een zogeheten
repeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-eventrepeated time-to-event (RTTE-)model dat kan worden gebruikt om deEen time-to-event

model voorspeld hoe
het risico op een

bepaalde
gebeurtenis zich

ontwikkelt over de
tijd. In een repeated
time-to-event model

kan de gebeurtenis
meerdere keren

plaatsvinden.

behandeling van hemofilie A patiënten te personaliseren op basis van
het individuele bloedingsrisico. Doorgaans wordt personalisatie van
de behandeling bereikt door te doseren op basis van vooraf bepaalde
factor VIII concentraties (PK-gestuurd doseren). In dit hoofdstuk stel-
len we voor om met behulp van een RTTE-model het individuele
bloedingsrisico te schatten, wat vervolgens gebruikt kan worden om
de verwachte jaarlijkse bloedingsfrequentie te voorspellen op basis van
een specifiek en individueel aangepast doseringsregime. Dit stelt ons
in staat om de optimale behandeling te selecteren op basis van de hoe-
veelheid voorspelde bloedingen, in plaats van enkel op basis van factor
VIII concentraties. Om eerdere RTTE-modellen te verbeteren, hebben
we meerdere modellen ontwikkeld om bloedingen behorende tot speci-
fieke categorieën te voorspellen. Hierbij maken we onderscheidt tussen
beschadigende bloedingen (bijv. in gewrichten) en kleinere bloedin-
gen (zoals neusbloedingen). Een patiënt met een grotere hoeveelheid
gewrichtsbloedingen heeft doorgaans een ernstiger bloedingsfenotype
dan patiënten die frequent blauwe plekken of neusbloedingen hebben.
Om een correcte schatting van het bloedingsrisico te krijgen is het dus
belangrijk om onderscheid te maken in de categorieën van doorge-
maakte bloedingen. Daarnaast maken we gebruik van een ’Gaussian
mixture model’ om de variatie in het bloedingsrisico te beschrijven voor
verschillende subgroepen van patiënten. Het model deelt patiënten in
groepen met lage, gemiddelde, en hoge frequenties aan bloedingen
om zo de verschillen tussen patiënten in deze subgroepen te verlagen.
Het model is ontwikkeld op basis van een dataset van 264 ernstige
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hemofilie A patiënten met een mediane follow-up van 881 dagen en
in totaal 3106 bloedingen.

We hebben vervolgens het model geëvalueerd door voorspellingen
van de jaarlijkse bloedingsfrequentie te vergelijken met de geobser-
veerde bloedingsfrequentie voor de verschillende categorieën van
bloedingen. Hier zagen we dat het grootste deel van de voorspel-
lingen (>70%) binnen één bloeding van de daadwerkelijke jaarlijkse
bloedingsfrequentie lag. Deze methode kan worden gebruikt om de
bloedingsuitkomsten van verschillende doseringsregimes te verge-
lijken voor een individuele patiënt. We laten zien hoe het model
onderscheid kan maken tussen de bloedingsuitkomsten van drie ver-
schillende doseringsregimes die vergelijkbare hoeveelheden factor
VIII concentraat gebruiken per week. Hieruit blijkt dat het tijdstip
waarop de specifieke doseringen worden toegediend een belangrijk
effect kan hebben op het bloedingsrisico. Geconcludeerd kan worden
dat de mogelijkheid om het optimale doseringsregime te selecteren
op basis van bloedingsuitkomsten een veelbelovend nieuwe aanpak
vormt voor de gepersonaliseerde behandeling van hemofilie A.

deel iv : het opti-clot webportaal

In hoofdstuk 10 introduceren we het OPTI-CLOT webportaal, een
gratis website waar behandelteams van patiënten met een zeldzame
bloedstollingsstoornis zoals hemofilie of von Willebrand ziekte een
doseringsadvies voor de behandeling met stollingsfactorconcentraten
kunnen aanvragen. Het webportaal ondersteunt de veilige overdracht
van patiëntgegevens, waarna een team van OPTI-CLOT farmacome-
tristen een initiële rapportage opstelt met een individueel afgestemd
doseringsadvies. Het behandelteam kan de opties vervolgens bespre-
ken met de patiënt. Indien gewenst kunnen in overleg alternatieve
doseringsregimes worden opgesteld. Als de keuze is bepaald wordt
een eindrapport opgesteld en opgeslagen in het webportaal, zodat
de volledige geschiedenis van eerdere adviezen altijd beschikbaar
blijft voor alle leden van het behandelteam. Dit webportaal kan in
de toekomst ook gebruikt worden om doseeradviezen op basis van
het individuele bloedingsrisico te geven, zoals beschreven in hoofd-
stuk 9. Daarnaast willen we de tijd die het kost om gegevens in te
voeren verlagen door automatisch de benodigde patiëntinformatie uit
elektronische patiëntendossiers te halen. Op deze manier hopen we
de toepassing van PK en PD-gestuurd doseren in de klinische prak-
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tijk te stimuleren voor de behandeling van patiënten met zeldzame
bloedstollingsstoornissen.

algemene discussie

In hoofdstuk 11 bespreken we de belangrijkste bevindingen van dit
proefschrift en bieden we toekomstperspectieven. We geven onze visie
voor de implementatie van machine learning methodes in de farma-
cometrie en bespreken voordelen en beperkingen. In het bijzonder
bespreken we de potentie van hybride modellen, die machine learning
methodes combineren met eerdere kennis van de farmacometrie om
zo de nauwkeurigheid van voorspellingen te verbeteren en efficiënter
gebruik te maken van de beschikbare data. Het DCM is een voor-
beeld van een hybride methode, en hoofdstukken in dit proefschrift
ondersteunen het gebruik van deze methode als een betrouwbaar en
robuust alternatief voor klassieke populatie PK modellen.

Vervolgens bespreken we hoe de gepersonaliseerde behandeling
van hemofilie A nog verder verbeterd kan worden en bieden we inzich-
ten in de oplossingen die machine learning technieken hierbij zouden
kunnen bieden. De toepassing van machine learning ter verbetering van
de behandeling van hemofilie A wordt onder andere verder onder-
zocht in het PHEMS consortium, een onderzoekinitiatief gestart door
de Europese Kinderziekenhuis organisatie (ECHO: European Child-
ren’s Hospitals Organisation). In toekomstig onderzoek zullen deze
en andere nieuwe methodes voor het personaliseren van de behan-
deling van patiënten met hemofilie A in het OPTI-CLOT webportaal
ondergebracht worden om zo de toepassing in de klinische praktijk te
bevorderen.

Tot slot, hopen we dat ons werk als voorbeeld zal dienen voor
hoe machine learning-gebaseerde methodes op een betrouwbare en
robuuste manier kunnen worden toegepast op problemen in de farma-
cometrie. We hebben laten zien hoe het gebruik van deze methodes
klinische voordelen kan opleveren, en hopen anderen te inspireren
om vergelijkbare methodes toe te passen in de context van andere
zeldzame aandoeningen.
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Vanzelfsprekend heb ik al dit werk niet in mijn eentje verricht vanuit
het comfort van mijn woon- of studeerkamer (zoals dat ging in jaar 1

en 2). Dit werk is uiteindelijk de culminatie van de inzet van talloze
collega’s en patiënten die hun tijd beschikbaar hebben gesteld voor de
wetenschap. Dit dankwoord is een poging om zo veel mogelijk van
deze mensen te benoemen en te bedanken.

Allereerst mijn promotieteam, mijn promotoren prof. dr. Ron Ma-
thôt & prof. dr. Marjon Cnossen en copromotor, dr. Frank Bennis. Toen
ik na een korte fling met de corporate wereld weer terugkeerde naar
de universiteit op zoek naar vrijheid en creativiteit hebben jullie er
voor gezorgd dat die overstap zo succesvol is geweest als dat ik het
heb ervaren.

Beste Ron, ik moet je heel erg bedanken voor al het vertrouwen en
de vrijheid die je mij hebt gegeven tijdens mijn onderzoek. Bijna vijf
jaar geleden ben ik bij je gekomen als een ex-bio medisch student en
IT-consultant die nog nooit van farmacologie gehoord had en graag
iets met ’machine learning’ wilde gaan doen. Ik had een paar kleine
projecten gedaan, maar er was weinig om van uit te gaan dat ik een
beetje kon integreren in de wereld van de farmacometrie. Van tevoren
had ik ook zeker niet verwacht hoe diep ik in de materie zou gaan en
hoe goed het mij allemaal ging bevallen. Het spijt me dat ik je op dit
traject allerlei enigszins onsamenhangende drafts van manuscripten
met stoffige wiskundige vergelijkingen heb gestuurd. Ik hoop dat ik
op dat vlak wat heb geleerd van jouw advies om een concreet en
simpel verhaal te vertellen. Ik denk dan ook dat in dit proefschrift
jouw sturing tussen de wiskunde duidelijk doorschemert.

Beste Marjon, ik ben trots dat ik je in mijn proefschrift en dank-
woord kan adresseren als professor! Deze titel is zeer verdiend voor
al het werk dat jij hebt verricht voor kinderen met zeldzame bloed-
stollingsstoornissen en natuurlijk sikkelcelziekte. Het was dan ook
jouw enthousiasme op de eerste dag dat ik je ontmoette die mij met-
een liet weten dat een promotie onderzoek als onderdeel van het
SYMPHONY consortium een prettige ervaring ging worden. Jouw
klinische en patiëntgerichte blik is in veel van de manuscripten in
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dit proefschrift duidelijk terug te vinden, en je hebt me geleerd om
de kliniek op de eerste plaats te zetten bij al deze projecten (okee
soms kropen technische details ook naar boven). Ik weet zeker dat de
machine learning projecten waar we mee begonnen zijn via jou hun
weg naar de patiënt gaan vinden. Wij farmacometristen houden heel
erg van onze modellen in onze achterkamertjes, en het vergt heel wat
om dit allemaal in het daglicht te brengen. In dat opzicht ben jij zeker
de juiste persoon op de juiste plek.

Beste Frank, toen ik op zoek was naar een copromotor om on-
dersteuning te bieden op het gebied van machine learning ben ik
terugblikkend heel blij dat ik bij jou beland ben. Ondanks dat de
farmacometrie ook nog een onbekend veld voor jou was (alles wat
wij hier gedaan hebben is een niche in een niche), heb je direct mee
kunnen denken bij mijn projecten. Het was jouw kunde om door
alle obscure machine learning technieken waar ik mee kwam heen te
kijken en een kritische blik te houden op de structuur van de experi-
menten. Je hield mij bescheiden door altijd de vraag te stellen of alle
toeters en bellen wel nodig waren. Ik heb altijd heel erg genoten van
onze discussies in de cafetaria van het AMC. Ik kwam vaak naar je
toe met een project dat alle kanten op ging, maar liep gelukkig altijd
weer weg met een concreet plan. Dit heeft uiteindelijk geleid tot een
pittig dik boek (als ik het zelf mag zeggen), maar gelukkig heeft jouw
interventie ervoor gezorgd dat er vele pagina’s onzin aan bespaart
zijn gebleven.

Dear members of the Doctorate committee, I thank you all for your
time and effort spend in reading and critiquing this thesis. I hope you
have found the contents newsworthy, which might have served as
some relief for having to go through the many pages I have presented
you. Mijn dank gaat ook uit naar prof. Schut, die als gast-opponent
wil optreden om zo weer een commissie van zes te vormen tijdens de
plechtigheid.

Mijn dank gaat ook uit naar alle co-auteurs en samenwerkingen die
ik heb ondergaan tijdens dit onderzoek. Beste prof. Hoogendoorn,
bedankt voor de hulp bij mijn eerste manuscript en de introductie tot
Frank binnen jouw onderzoeksgroep. Dit project heeft veel tijd gekost,
maar heeft me veel geleerd over hoe een goede voorbereiding tijd
kan besparen. Beste prof. Leebeek, bedankt dat je naar een van mijn
vroege manuscripten hebt willen kijken. Hoewel het wellicht lastig
was om in dit stadium de klinische interpretatie te vinden, heb jij
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inference. Mijn kennis van dat veld reikte op dat moment tot het lezen
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goede moment. Beste Tine, bedankt voor de fijne samenwerking bij
het schrijven van onze scoping review over de klinische implementatie
van hemofilie. Dit bleek ongelofelijk veel werk en ondanks dat ik je
geduld soms testte hebben we een mooi stuk geleverd! Dear Jessica
& Michael, I was glad to be able to contribute to your work on the
RISE data, and I am sure it will lead to a great paper. Beste Paul, naast
jouw verdiensten als onderdeel van de promotiecommissie heb ik al
een flinke tijd terug een idee bij jou gepitcht voor de toepassing van
machine learning op de ICU. Hoewel ik je nog steeds laat wachten
op een mooie uitkomst, hoop ik de komende tijd grote stappen te
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voor de introductie bij prof. dr. Michaela van der Schaar en dr. Ari
Ercole bij de Universiteit van Cambridge. Het bezoek aan Cambridge
heb ik als heel inspirerend ervaren en resulteert hopelijk in verdere
samenwerkingen. That brings me to Ari and Pietro, I want to thank
you both for receiving me with open arms in Cambridge. Although
our time together there has been relatively short, I consider my time
in Cambridge as very inspiring and hope that we will be able to
continue our collaboration. Ook dank aan de medewerkers van CSL
Behring Nederland die ons toegang hebben verleend tot gegevens van
patiënten die mee hebben gedaan aan klinische studies geïnitieerd
door het bedrijf. Met deze gegevens hebben we twee mooie projecten
weten te volbrengen. Ten slotte natuurlijk Konrad, bedankt voor de
prettige samenwerking als onderdeel van de DosEmi studie. Ik ben
natuurlijk maar betrokken geweest bij een klein deel van de studie,
dus respecteer alle moeite die je in deze studie hebt gestoken. Ik weet
zeker dat deze studie een mooi resultaat gaat brengen!

Daarnaast wil ik ook graag mijn collega’s, de Ronderzoekers (mis-
schien ooit Testosteron), Laura, Amadou, Michael, Matteo, Medhat,
Rafael, en Jelien bedanken voor de fijne samenwerking, leuke dis-
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vol emotie en gevuld met nostalgie terug aan ons simpele bestaan
naast de Albert Heijn. Steffie, Medhat, Matteo, Rafael en Jelien wens ik
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veel succes (en sterke) bij de afronding van hun PhD. Ik wens Snoerd
en Jelly natuurlijk ook veel voorspoed met het uitkopen van de Deli
met alle opgespaarde koffie punten.

A special thank you also to my international colleagues and the new
friends I have made over the years. The pharmacometrics research
community, friends made during midnight snacks at the pizza vending
machine during the PAGE meetings in Ljubljana, A Coruña, and Rome,
and of course during WCOP in Cape Town. I had never before seen a
professor order multiple rounds of tequila shots for everyone present
at a conference social event. Je suis Paolo. I have always regarded my
time in Cape Town and South Africa as truly special, especially after
spending a year and a half indoors. Finally being released into the
wild after COVID to meet such a friendly and open group to go
on some adventures was amazing. Thanks Paolo, Roeland, Marie,
Eduardo, Victor, Allen, and others. Wishing you the best. Part of
becoming independent as an academic is unfortunately that going to
PAGE means paying the big bucks for admission, so I hope I will still
be able to meet my international friends at future events.

Ook veel van mijn dank gaat uit naar de klinische tak van het SYMP-
HONY consortium. Tine, Iris, Wala, Caroline, en eerdere collega’s,
bedankt voor alle moeite die jullie in ons gezamenlijk onderzoek
hebben gestopt. Veel van jullie hebben talloze uren gespendeerd met
het verzamelen van de patiënt gegevens waar onderzoekers zoals ik
gretig gebruik van maken. Lieke en Martijn, ik heb veel lol met jullie
gehad tijdens borrels. I wish Bas, Minka, Caroline, Diaz, Snoerd,
Lieke, Lorenzo, Huang, Jessica, Ryanne, Martijn, and Wala a lot of
success with the finalization of their PhD. Ook alle andere leden van
het SYMPHONY consortium en de OPTI-CLOT studie groep bedankt
voor alle inzet in het succesvol maken van deze samenwerkingen! Ook
al mijn andere collega’s van de apotheek bedank ik voor de gezellige
lunches in het hok ondanks de matriarchale sfeer die ik daar als man
heb moeten ervaren (grapje).

Beste Julian, je bent een van mijn oudste vrienden en daar ben ik
erg blij om. Bedankt voor de avonden waar ik de hele nacht je de
oren van het lijf gepraat heb met mijn onderzoek, de technieken die ik
interessant vond, en de vraagstukken over het leven. Ik hoop dat we
lang goede vrienden blijven.
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As an AI language model, I may not have the full context or details
to perfectly address your question, but here is an attempt:

"Beste mannen en dame van Zwaar weer, Bauk, Bram, Daan, Jan,
Laurens, Marley, Nick, dr. Steef, Sven en Tankie. Ik laat jullie na-
tuurlijk niet ongenoemd. Ik had niet durven dromen dat ik nog zulke
goede vrienden over zou houden aan een eerstejaarsploeg. We hebben
een hechte band ontwikkeld tijdens het roeien die heel belangrijk voor
mij geworden is. Dit alles culmineerde natuurlijk in het zilveren blik
voor Jan in Parijs. Het was ongelofelijk om hier met z’n allen bij te
zijn en met zweet onder de okseltjes langs de kant Jan voorbij te zien
knallen. We wachten natuurlijk allemaal nog op de credits voor ons
aandeel in dit succes, any time Jan. De doktoren gaan ons om de
oren vliegen in de toekomst, dus speciaal dan ook nog erg veel succes
gewenst bij de afronding van jullie onderzoek Martijn, Jasmijn en
Daan, wordt zeker fantastisch! Ten slotte, Nick, ik hoop dat je me
binnenkort kan uitleggen wat ik nou precies gedaan heb met mijn PhD
nadat je de tijd hebt kunnen vinden om even snel de samenvatting te
scannen."

Natuurlijk ook grote dank aan Yoël, toch wel een van mijn beste
vrienden overgehouden aan Skøll. Ik vind het mooi wat voor goede
match wij zijn (#emotioneel). Jij hebt altijd door gehad dat ik gek was
om een PhD te gaan doen, positieve ervaringen zoals jij met onderzoek
hebt gehad zijn immers schaars. Ik wens je dan toch ook nog zeker
een eigen PhD ervaring toe, misschien iets van een multi-centre trial
over het hulpbehoevende gedrag van expats in het buitenland.

Bedankt vrienden en familie voor alle etentjes, verjaardagen, borrels,
en gezelligheid van de afgelopen jaren, ik hoop dat nu mijn PhD
voorbij is ik weer wat vaker mijn kop laat zien!

Lieve pap en mam, jullie natuurlijk ook heel erg bedankt voor al
jullie steun en liefde in mijn leven. Wie had gedacht dat ik na de
basisschool zou studeren aan de universiteit, laat staan een poging
zou doen om een doctoraat te behalen? Ik denk dat jullie invloed
doorschemert in al het werk in dit proefschrift. Aan de ene kant
heb ik een hele boel af geprogrammeerd, aan de andere kant heb
ik de cover zelf ontworpen, en altijd geprobeerd om al mijn figuren
visueel aantrekkelijk te maken tegenover alle stoffige zwart-wit figuren.
Bedankt voor alles!



358 general discussion and perspectives

Jij ook bedankt broertje, Jur, hoewel het leek dat we in de mid-
delbare school twee kanten op gingen, blijkt uit de laatste jaren
toch dat we op elkaar lijken. Ik Bio-medische wetenschappen, jij Bio-
farmaceutische wetenschappen. Ik toch richting machine learning, jij
richting machine learning. Ik een PhD, jij een PhD. Ik een rijbewijs, jij
een rijbewijs! Technisch gezien ben jij er alleen steeds iets eerder bij.
Ik weet zeker dat jij ook een fantastisch proefschrift gaat afleveren!

Als laatste mag ik natuurlijk mijn lieve vriendin Laura bedanken.
Je hebt veel met mij moeten doorstaan, vooral ook tijdens de jaren
dat ik elk uur in de dag aan mijn promotie leek te wijden. Ik mag
van geluk spreken dat ik zo’n goede band heb ontwikkeld met zo’n
fantastisch iemand, en met zo’n leuke schoonfamilie (jullie natuurlijk
ook bedankt voor alles in deze periode!). Bedankt voor al je geduld
(en misschien ook soms de totale afwezigheid daarvan, denk aan
dit proefschrift). Binnenkort doen we dit nog een keer voor jouw
verdediging!







A C K N O W L E D G E M E N T S

The SYMPHONY consortium [1] which aims to orchestrate person-
alised treatment in patients with bleeding disorders, is a unique col-
laboration between patients, health care professionals and transla-
tional & fundamental researchers specialised in inherited bleeding
disorders, as well as experts from multiple disciplines. It aims to
identify best treatment choice for each individual based on bleeding
phenotype. In order to achieve this goal, workpackages (WP) have
been organised according to three themes e.g. Diagnostics (WPs 3

& 4); Treatment (WPs 5-9) and Fundamental Research (WPs 10-12).
This research received funding from the Netherlands Organisation
for Scientific Research (NWO) in the framework of the NWA-ORC
Call grant agreement NWA.1160.18.038. Principal investigator: Dr.
M.H. Cnossen. Project manager: Dr. S.H. Reitsma. More information:
www.symphonyconsortium.nl.

Beneficiaries of the SYMPHONY consortium: Erasmus MC and
Erasmus MC Sophia Children’s Hospital, University Medical Center
Rotterdam, project leadership and coordination; Sanquin Diagnostics;
Sanquin Research; Amsterdam University Medical Centers; University
Medical Center Groningen; University Medical Center Utrecht; Lei-
den University Medical Center; Radboud University Medical Center;
Netherlands Society of Hemophilia Patients (NVHP); Netherlands
Society for Thrombosis and Hemostasis (NVTH); Bayer B.V., CSL
Behring B.V., Swedish Orphan Biovitrum (The Netherlands) B.V..
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